Drug Target Binding Affinity (DTBA) Model
class DeepPurpose.models.DBTA
Drug Target Binding Affinity (DBTA) (Source) include all component, including drug encoder, target encoder and classifier/regressor.
constructor create an instance of DBTA.
__init__(self, **config)
- config (kwargs, keyword arguments) - specify the parameter of DBTA.
- drug_encoding (str) - Encoder mode for drug. It can be "transformer", "MPNN", "CNN", "CNN_RNN" ...,
- target_encoding (str) - Encoder mode for protein. It can be "transformer", "CNN", "CNN_RNN" ...,
- result_folder (str) - directory that store the learning log/results.
- concrete parameter for encoder model (repeated)
test_ include all the test procedure.
test_(self, data_generator, model, repurposing_mode = False, test = False):
- data_generator (iterator) - iterator of torch.utils.data.DataLoader. It can be test data or validation data.
- model (DeepPurpose.models.Classifier) - model of DBTA.
- repurposing_mode (bool) - If repurposing_mode is True, then do repurposing. Otherwise, do compute the accuracy (including AUC score).
- test (bool) - If test is True, plot ROC-AUC and PR-AUC curve. Otherwise, pass.
train include all the training procedure.
train(self, train, val, test = None, verbose = True)
- train (torch.utils.data.dataloader) - Train data loader
- val (torch.utils.data.dataloader) - Valid data loader
- test (torch.utils.data.dataloader) - Test data loader
- verbose (bool) - If verbose is True, then print training record every 100 iterations.
predict include all the inference procedure.
predict(self, df_data)
- df_data (pd.DataFrame) - specify data that we need to predict.
save_model save the well-trained model to specific directory.
save_model(self, path_dir)
- path_dir (str, a directory) - the path where model is saved.
load_pretrained load the well-trained model so that we are able to make inference directly and don't have to train model from scratch.
load_pretrained(self, path)
- path (str, a directory) - the path where model is loaded.