[0a9449]: / docs / source / notes / dtba / dbta.rst

Download this file

83 lines (39 with data), 2.5 kB

Drug Target Binding Affinity (DTBA) Model

class DeepPurpose.models.DBTA

Drug Target Binding Affinity (DBTA) (Source) include all component, including drug encoder, target encoder and classifier/regressor.

constructor create an instance of DBTA.

__init__(self, **config)
  • config (kwargs, keyword arguments) - specify the parameter of DBTA.
    • drug_encoding (str) - Encoder mode for drug. It can be "transformer", "MPNN", "CNN", "CNN_RNN" ...,
    • target_encoding (str) - Encoder mode for protein. It can be "transformer", "CNN", "CNN_RNN" ...,
    • result_folder (str) - directory that store the learning log/results.
    • concrete parameter for encoder model (repeated)

test_ include all the test procedure.

test_(self, data_generator, model, repurposing_mode = False, test = False):
  • data_generator (iterator) - iterator of torch.utils.data.DataLoader. It can be test data or validation data.
  • model (DeepPurpose.models.Classifier) - model of DBTA.
  • repurposing_mode (bool) - If repurposing_mode is True, then do repurposing. Otherwise, do compute the accuracy (including AUC score).
  • test (bool) - If test is True, plot ROC-AUC and PR-AUC curve. Otherwise, pass.

train include all the training procedure.

train(self, train, val, test = None, verbose = True)
  • train (torch.utils.data.dataloader) - Train data loader
  • val (torch.utils.data.dataloader) - Valid data loader
  • test (torch.utils.data.dataloader) - Test data loader
  • verbose (bool) - If verbose is True, then print training record every 100 iterations.

predict include all the inference procedure.

predict(self, df_data)
  • df_data (pd.DataFrame) - specify data that we need to predict.

save_model save the well-trained model to specific directory.

save_model(self, path_dir)
  • path_dir (str, a directory) - the path where model is saved.

load_pretrained load the well-trained model so that we are able to make inference directly and don't have to train model from scratch.

load_pretrained(self, path)
  • path (str, a directory) - the path where model is loaded.