Switch to unified view

a b/DEMO/case-study-II-Virtual-Screening-for-BindingDB-IC50.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import os\n",
10
    "os.chdir('../')"
11
   ]
12
  },
13
  {
14
   "cell_type": "code",
15
   "execution_count": 2,
16
   "metadata": {
17
    "scrolled": false
18
   },
19
   "outputs": [
20
    {
21
     "name": "stdout",
22
     "output_type": "stream",
23
     "text": [
24
      "Downloading...\n",
25
      "Loading customized repurposing dataset...\n",
26
      "Beginning Downloading Pretrained Model...\n",
27
      "Note: if you have already download the pretrained model before, please stop the program and set the input parameter 'pretrained_dir' to the path\n",
28
      "Dataset already downloaded in the local system...\n",
29
      "Using pretrained model and making predictions...\n",
30
      "virtual screening...\n",
31
      "Drug Target Interaction Prediction Mode...\n",
32
      "in total: 100 drug-target pairs\n",
33
      "encoding drug...\n",
34
      "unique drugs: 100\n",
35
      "encoding protein...\n",
36
      "unique target sequence: 91\n",
37
      "Done.\n",
38
      "predicting...\n",
39
      "---------------\n",
40
      "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
41
      "-------------\n",
42
      "virtual screening...\n",
43
      "Drug Target Interaction Prediction Mode...\n",
44
      "in total: 100 drug-target pairs\n",
45
      "encoding drug...\n",
46
      "unique drugs: 100\n",
47
      "encoding protein...\n",
48
      "unique target sequence: 91\n",
49
      "Done.\n",
50
      "predicting...\n",
51
      "---------------\n",
52
      "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
53
      "-------------\n",
54
      "virtual screening...\n",
55
      "Drug Target Interaction Prediction Mode...\n",
56
      "in total: 100 drug-target pairs\n",
57
      "encoding drug...\n",
58
      "unique drugs: 100\n",
59
      "encoding protein...\n",
60
      "unique target sequence: 91\n",
61
      "Done.\n",
62
      "predicting...\n",
63
      "---------------\n",
64
      "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
65
      "-------------\n",
66
      "virtual screening...\n",
67
      "Drug Target Interaction Prediction Mode...\n",
68
      "in total: 100 drug-target pairs\n",
69
      "encoding drug...\n",
70
      "unique drugs: 100\n",
71
      "encoding protein...\n",
72
      "unique target sequence: 91\n",
73
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
74
      "Done.\n",
75
      "predicting...\n",
76
      "---------------\n",
77
      "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
78
      "-------------\n",
79
      "virtual screening...\n",
80
      "Drug Target Interaction Prediction Mode...\n",
81
      "in total: 100 drug-target pairs\n",
82
      "encoding drug...\n",
83
      "unique drugs: 100\n",
84
      "encoding protein...\n",
85
      "unique target sequence: 91\n",
86
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
87
      "Done.\n",
88
      "predicting...\n",
89
      "---------------\n",
90
      "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
91
      "-------------\n",
92
      "models prediction finished...\n",
93
      "aggregating results...\n",
94
      "virtual screening...\n",
95
      "Drug Target Interaction Prediction Mode...\n",
96
      "in total: 100 drug-target pairs\n",
97
      "encoding drug...\n",
98
      "unique drugs: 100\n",
99
      "encoding protein...\n",
100
      "unique target sequence: 91\n",
101
      "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
102
      "Done.\n",
103
      "predicting...\n",
104
      "---------------\n",
105
      "Virtual Screening Result\n",
106
      "+------+-----------+-------------+---------------+\n",
107
      "| Rank | Drug Name | Target Name | Binding Score |\n",
108
      "+------+-----------+-------------+---------------+\n",
109
      "|  1   |  Drug 80  |  Target 80  |      0.58     |\n",
110
      "|  2   |  Drug 86  |  Target 86  |      0.85     |\n",
111
      "|  3   |   Drug 4  |   Target 4  |      0.89     |\n",
112
      "|  4   |  Drug 89  |  Target 89  |      1.62     |\n",
113
      "|  5   |  Drug 44  |  Target 44  |      1.67     |\n",
114
      "|  6   |  Drug 58  |  Target 58  |      1.87     |\n",
115
      "|  7   |  Drug 35  |  Target 35  |      2.74     |\n",
116
      "|  8   |  Drug 43  |  Target 43  |      2.98     |\n",
117
      "|  9   |  Drug 23  |  Target 23  |      3.95     |\n",
118
      "|  10  |  Drug 25  |  Target 25  |      4.55     |\n",
119
      "|  11  |  Drug 15  |  Target 15  |      4.86     |\n",
120
      "|  12  |  Drug 97  |  Target 97  |      5.03     |\n",
121
      "|  13  |  Drug 24  |  Target 24  |      6.31     |\n",
122
      "|  14  |  Drug 47  |  Target 47  |      6.53     |\n",
123
      "|  15  |  Drug 48  |  Target 48  |     11.22     |\n",
124
      "|  16  |  Drug 50  |  Target 50  |     11.35     |\n",
125
      "|  17  |  Drug 92  |  Target 92  |     16.71     |\n",
126
      "|  18  |  Drug 66  |  Target 66  |     17.49     |\n",
127
      "|  19  |  Drug 26  |  Target 26  |     18.03     |\n",
128
      "|  20  |  Drug 87  |  Target 87  |     18.64     |\n",
129
      "|  21  |  Drug 93  |  Target 93  |     19.38     |\n",
130
      "|  22  |  Drug 20  |  Target 20  |     23.28     |\n",
131
      "|  23  |  Drug 49  |  Target 49  |     27.10     |\n",
132
      "|  24  |  Drug 30  |  Target 30  |     28.13     |\n",
133
      "|  25  |  Drug 33  |  Target 33  |     33.48     |\n",
134
      "|  26  |  Drug 13  |  Target 13  |     33.54     |\n",
135
      "|  27  |  Drug 45  |  Target 45  |     34.65     |\n",
136
      "|  28  |  Drug 29  |  Target 29  |     45.16     |\n",
137
      "|  29  |  Drug 72  |  Target 72  |     46.54     |\n",
138
      "|  30  |  Drug 28  |  Target 28  |     55.87     |\n",
139
      "checkout ./save_folder/results_aggregation/virtual_screening.txt for the whole list\n",
140
      "\n"
141
     ]
142
    }
143
   ],
144
   "source": [
145
    "from DeepPurpose import oneliner\n",
146
    "from DeepPurpose.dataset import *\n",
147
    "oneliner.virtual_screening(*load_IC50_1000_Samples())"
148
   ]
149
  },
150
  {
151
   "cell_type": "code",
152
   "execution_count": null,
153
   "metadata": {},
154
   "outputs": [],
155
   "source": []
156
  }
157
 ],
158
 "metadata": {
159
  "kernelspec": {
160
   "display_name": "Python [conda env:DeepPurpose]",
161
   "language": "python",
162
   "name": "conda-env-DeepPurpose-py"
163
  },
164
  "language_info": {
165
   "codemirror_mode": {
166
    "name": "ipython",
167
    "version": 3
168
   },
169
   "file_extension": ".py",
170
   "mimetype": "text/x-python",
171
   "name": "python",
172
   "nbconvert_exporter": "python",
173
   "pygments_lexer": "ipython3",
174
   "version": "3.7.7"
175
  }
176
 },
177
 "nbformat": 4,
178
 "nbformat_minor": 4
179
}