180 lines (179 with data), 6.9 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.chdir('../')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading...\n",
"Loading customized repurposing dataset...\n",
"Beginning Downloading Pretrained Model...\n",
"Note: if you have already download the pretrained model before, please stop the program and set the input parameter 'pretrained_dir' to the path\n",
"Dataset already downloaded in the local system...\n",
"Using pretrained model and making predictions...\n",
"virtual screening...\n",
"Drug Target Interaction Prediction Mode...\n",
"in total: 100 drug-target pairs\n",
"encoding drug...\n",
"unique drugs: 100\n",
"encoding protein...\n",
"unique target sequence: 91\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n",
"-------------\n",
"virtual screening...\n",
"Drug Target Interaction Prediction Mode...\n",
"in total: 100 drug-target pairs\n",
"encoding drug...\n",
"unique drugs: 100\n",
"encoding protein...\n",
"unique target sequence: 91\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n",
"-------------\n",
"virtual screening...\n",
"Drug Target Interaction Prediction Mode...\n",
"in total: 100 drug-target pairs\n",
"encoding drug...\n",
"unique drugs: 100\n",
"encoding protein...\n",
"unique target sequence: 91\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n",
"-------------\n",
"virtual screening...\n",
"Drug Target Interaction Prediction Mode...\n",
"in total: 100 drug-target pairs\n",
"encoding drug...\n",
"unique drugs: 100\n",
"encoding protein...\n",
"unique target sequence: 91\n",
"-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n",
"-------------\n",
"virtual screening...\n",
"Drug Target Interaction Prediction Mode...\n",
"in total: 100 drug-target pairs\n",
"encoding drug...\n",
"unique drugs: 100\n",
"encoding protein...\n",
"unique target sequence: 91\n",
"-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n",
"-------------\n",
"models prediction finished...\n",
"aggregating results...\n",
"virtual screening...\n",
"Drug Target Interaction Prediction Mode...\n",
"in total: 100 drug-target pairs\n",
"encoding drug...\n",
"unique drugs: 100\n",
"encoding protein...\n",
"unique target sequence: 91\n",
"-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Virtual Screening Result\n",
"+------+-----------+-------------+---------------+\n",
"| Rank | Drug Name | Target Name | Binding Score |\n",
"+------+-----------+-------------+---------------+\n",
"| 1 | Drug 80 | Target 80 | 0.58 |\n",
"| 2 | Drug 86 | Target 86 | 0.85 |\n",
"| 3 | Drug 4 | Target 4 | 0.89 |\n",
"| 4 | Drug 89 | Target 89 | 1.62 |\n",
"| 5 | Drug 44 | Target 44 | 1.67 |\n",
"| 6 | Drug 58 | Target 58 | 1.87 |\n",
"| 7 | Drug 35 | Target 35 | 2.74 |\n",
"| 8 | Drug 43 | Target 43 | 2.98 |\n",
"| 9 | Drug 23 | Target 23 | 3.95 |\n",
"| 10 | Drug 25 | Target 25 | 4.55 |\n",
"| 11 | Drug 15 | Target 15 | 4.86 |\n",
"| 12 | Drug 97 | Target 97 | 5.03 |\n",
"| 13 | Drug 24 | Target 24 | 6.31 |\n",
"| 14 | Drug 47 | Target 47 | 6.53 |\n",
"| 15 | Drug 48 | Target 48 | 11.22 |\n",
"| 16 | Drug 50 | Target 50 | 11.35 |\n",
"| 17 | Drug 92 | Target 92 | 16.71 |\n",
"| 18 | Drug 66 | Target 66 | 17.49 |\n",
"| 19 | Drug 26 | Target 26 | 18.03 |\n",
"| 20 | Drug 87 | Target 87 | 18.64 |\n",
"| 21 | Drug 93 | Target 93 | 19.38 |\n",
"| 22 | Drug 20 | Target 20 | 23.28 |\n",
"| 23 | Drug 49 | Target 49 | 27.10 |\n",
"| 24 | Drug 30 | Target 30 | 28.13 |\n",
"| 25 | Drug 33 | Target 33 | 33.48 |\n",
"| 26 | Drug 13 | Target 13 | 33.54 |\n",
"| 27 | Drug 45 | Target 45 | 34.65 |\n",
"| 28 | Drug 29 | Target 29 | 45.16 |\n",
"| 29 | Drug 72 | Target 72 | 46.54 |\n",
"| 30 | Drug 28 | Target 28 | 55.87 |\n",
"checkout ./save_folder/results_aggregation/virtual_screening.txt for the whole list\n",
"\n"
]
}
],
"source": [
"from DeepPurpose import oneliner\n",
"from DeepPurpose.dataset import *\n",
"oneliner.virtual_screening(*load_IC50_1000_Samples())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:DeepPurpose]",
"language": "python",
"name": "conda-env-DeepPurpose-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}