--- a +++ b/DEMO/case-study-II-Virtual-Screening-for-BindingDB-IC50.ipynb @@ -0,0 +1,179 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading...\n", + "Loading customized repurposing dataset...\n", + "Beginning Downloading Pretrained Model...\n", + "Note: if you have already download the pretrained model before, please stop the program and set the input parameter 'pretrained_dir' to the path\n", + "Dataset already downloaded in the local system...\n", + "Using pretrained model and making predictions...\n", + "virtual screening...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 100 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 100\n", + "encoding protein...\n", + "unique target sequence: 91\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 1 with drug encoding MPNN and target encoding CNN are done...\n", + "-------------\n", + "virtual screening...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 100 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 100\n", + "encoding protein...\n", + "unique target sequence: 91\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 2 with drug encoding CNN and target encoding CNN are done...\n", + "-------------\n", + "virtual screening...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 100 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 100\n", + "encoding protein...\n", + "unique target sequence: 91\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 3 with drug encoding Morgan and target encoding CNN are done...\n", + "-------------\n", + "virtual screening...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 100 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 100\n", + "encoding protein...\n", + "unique target sequence: 91\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 4 with drug encoding Morgan and target encoding AAC are done...\n", + "-------------\n", + "virtual screening...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 100 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 100\n", + "encoding protein...\n", + "unique target sequence: 91\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Predictions from model 5 with drug encoding Daylight and target encoding AAC are done...\n", + "-------------\n", + "models prediction finished...\n", + "aggregating results...\n", + "virtual screening...\n", + "Drug Target Interaction Prediction Mode...\n", + "in total: 100 drug-target pairs\n", + "encoding drug...\n", + "unique drugs: 100\n", + "encoding protein...\n", + "unique target sequence: 91\n", + "-- Encoding AAC takes time. Time Reference: 24s for ~100 sequences in a CPU.\t\t\t\t Calculate your time by the unique target sequence #, instead of the entire dataset.\n", + "Done.\n", + "predicting...\n", + "---------------\n", + "Virtual Screening Result\n", + "+------+-----------+-------------+---------------+\n", + "| Rank | Drug Name | Target Name | Binding Score |\n", + "+------+-----------+-------------+---------------+\n", + "| 1 | Drug 80 | Target 80 | 0.58 |\n", + "| 2 | Drug 86 | Target 86 | 0.85 |\n", + "| 3 | Drug 4 | Target 4 | 0.89 |\n", + "| 4 | Drug 89 | Target 89 | 1.62 |\n", + "| 5 | Drug 44 | Target 44 | 1.67 |\n", + "| 6 | Drug 58 | Target 58 | 1.87 |\n", + "| 7 | Drug 35 | Target 35 | 2.74 |\n", + "| 8 | Drug 43 | Target 43 | 2.98 |\n", + "| 9 | Drug 23 | Target 23 | 3.95 |\n", + "| 10 | Drug 25 | Target 25 | 4.55 |\n", + "| 11 | Drug 15 | Target 15 | 4.86 |\n", + "| 12 | Drug 97 | Target 97 | 5.03 |\n", + "| 13 | Drug 24 | Target 24 | 6.31 |\n", + "| 14 | Drug 47 | Target 47 | 6.53 |\n", + "| 15 | Drug 48 | Target 48 | 11.22 |\n", + "| 16 | Drug 50 | Target 50 | 11.35 |\n", + "| 17 | Drug 92 | Target 92 | 16.71 |\n", + "| 18 | Drug 66 | Target 66 | 17.49 |\n", + "| 19 | Drug 26 | Target 26 | 18.03 |\n", + "| 20 | Drug 87 | Target 87 | 18.64 |\n", + "| 21 | Drug 93 | Target 93 | 19.38 |\n", + "| 22 | Drug 20 | Target 20 | 23.28 |\n", + "| 23 | Drug 49 | Target 49 | 27.10 |\n", + "| 24 | Drug 30 | Target 30 | 28.13 |\n", + "| 25 | Drug 33 | Target 33 | 33.48 |\n", + "| 26 | Drug 13 | Target 13 | 33.54 |\n", + "| 27 | Drug 45 | Target 45 | 34.65 |\n", + "| 28 | Drug 29 | Target 29 | 45.16 |\n", + "| 29 | Drug 72 | Target 72 | 46.54 |\n", + "| 30 | Drug 28 | Target 28 | 55.87 |\n", + "checkout ./save_folder/results_aggregation/virtual_screening.txt for the whole list\n", + "\n" + ] + } + ], + "source": [ + "from DeepPurpose import oneliner\n", + "from DeepPurpose.dataset import *\n", + "oneliner.virtual_screening(*load_IC50_1000_Samples())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:DeepPurpose]", + "language": "python", + "name": "conda-env-DeepPurpose-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}