--- a +++ b/src/run_LRP.py @@ -0,0 +1,168 @@ +from time import time +import math, os +from sklearn import metrics +from sklearn.cluster import KMeans +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.nn import Parameter +import torch.nn.functional as F +import torch.optim as optim +from torch.utils.data import DataLoader, TensorDataset + +from scMDC import scMultiCluster +import numpy as np +import collections +import h5py +import scanpy as sc +from preprocess import read_dataset, normalize, clr_normalize_each_cell +from utils import * +from functools import reduce +from LRP import LRP + + +if __name__ == "__main__": + + # setting the hyper parameters + import argparse + parser = argparse.ArgumentParser(description='train', + formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--n_clusters', default=8, type=int) + parser.add_argument('--cutoff', default=0.5, type=float, help='Start to train combined layer after what ratio of epoch') + parser.add_argument('--batch_size', default=256, type=int) + parser.add_argument('--data_file', default='Simulation.1.h5') + parser.add_argument('--cluster_index_file', default='label.txt') + parser.add_argument('--maxiter', default=10000, type=int) + parser.add_argument('--pretrain_epochs', default=400, type=int) + parser.add_argument('--gamma', default=.1, type=float, + help='coefficient of clustering loss') + parser.add_argument('--tau', default=1., type=float, + help='fuzziness of clustering loss') + parser.add_argument('--phi1', default=0.001, type=float, + help='coefficient of KL loss in pretraining stage') + parser.add_argument('--phi2', default=0.001, type=float, + help='coefficient of KL loss in clustering stage') + parser.add_argument('--update_interval', default=1, type=int) + parser.add_argument('--tol', default=0.001, type=float) + parser.add_argument('--ae_weights', default=None) + parser.add_argument('--save_dir', default='results/') + parser.add_argument('--ae_weight_file', default='AE_weights_1.pth.tar') + parser.add_argument('--resolution', default=0.2, type=float) + parser.add_argument('--n_neighbors', default=30, type=int) + parser.add_argument('--embedding_file', action='store_true', default=False) + parser.add_argument('--prediction_file', action='store_true', default=False) + parser.add_argument('-el','--encodeLayer', nargs='+', default=[256,64,32,16]) + parser.add_argument('-dl1','--decodeLayer1', nargs='+', default=[16,64,256]) + parser.add_argument('-dl2','--decodeLayer2', nargs='+', default=[16,20]) + parser.add_argument('--sigma1', default=2.5, type=float) + parser.add_argument('--sigma2', default=1.5, type=float) + parser.add_argument('--f1', default=1000, type=float, help='Number of mRNA after feature selection') + parser.add_argument('--f2', default=2000, type=float, help='Number of ADT/ATAC after feature selection') + parser.add_argument('--filter1', action='store_true', default=False, help='Do mRNA selection') + parser.add_argument('--filter2', action='store_true', default=False, help='Do ADT/ATAC selection') + parser.add_argument('--run', default=1, type=int) + parser.add_argument('--beta', default=1., type=float, + help='coefficient of the clustering fuzziness') + parser.add_argument('--margin', default=1., type=float, + help='margin of difference between logits') + parser.add_argument('--lamda', default=100., type=float, + help='coefficient of the clustering perturbation loss') + parser.add_argument('--lr', default=0.001, type=int) + parser.add_argument('--device', default='cuda') + + args = parser.parse_args() + print(args) + data_mat = h5py.File(args.data_file) + x1 = np.array(data_mat['X1']) + x2 = np.array(data_mat['X2']) + #y = np.array(data_mat['Y']) - 1 + data_mat.close() + + + clust_ids = np.loadtxt(args.cluster_index_file, delimiter=",").astype(int) + + #Gene features + if args.filter1: + importantGenes = geneSelection(x1, n=args.f1, plot=False) + x1 = x1[:, importantGenes] + if args.filter2: + importantGenes = geneSelection(x2, n=args.f2, plot=False) + x2 = x2[:, importantGenes] + + adata1 = sc.AnnData(x1) + #adata1.obs['Group'] = y + + adata1 = read_dataset(adata1, + transpose=False, + test_split=False, + copy=True) + + adata1 = normalize(adata1, + size_factors=True, + normalize_input=True, + logtrans_input=True) + + adata2 = sc.AnnData(x2) + #adata2.obs['Group'] = y + adata2 = read_dataset(adata2, + transpose=False, + test_split=False, + copy=True) + + adata2 = normalize(adata2, + size_factors=True, + normalize_input=True, + logtrans_input=True) + + #adata2 = clr_normalize_each_cell(adata2) + + input_size1 = adata1.n_vars + input_size2 = adata2.n_vars + print(adata1.X.shape) + print(adata2.X.shape) + + print(args) + + encodeLayer = list(map(int, args.encodeLayer)) + decodeLayer1 = list(map(int, args.decodeLayer1)) + decodeLayer2 = list(map(int, args.decodeLayer2)) + + model = scMultiCluster(input_dim1=input_size1, input_dim2=input_size2, tau=args.tau, + encodeLayer=encodeLayer, decodeLayer1=decodeLayer1, decodeLayer2=decodeLayer2, + activation='elu', sigma1=args.sigma1, sigma2=args.sigma2, gamma=args.gamma, + cutoff = args.cutoff, phi1=args.phi1, phi2=args.phi2, device=args.device).to(args.device) + + print(str(model)) + + if os.path.isfile(args.ae_weights): + print("==> loading checkpoint '{}'".format(args.ae_weights)) + checkpoint = torch.load(args.ae_weights) + model.load_state_dict(checkpoint['ae_state_dict']) + else: + print("==> no checkpoint found at '{}'".format(args.ae_weights)) + raise ValueError + + n_clusters = np.unique(clust_ids).shape[0] + print("n cluster is: " + str(n_clusters)) + + Z = model.encodeBatch(torch.tensor(adata1.X).to(args.device), torch.tensor(adata2.X).to(args.device)).data.cpu().numpy() + + cluster_list = np.unique(clust_ids).astype(int).tolist() + print(cluster_list) + + model_explainer = LRP(model, X1=adata1.X, X2=adata2.X, Z=Z, clust_ids=clust_ids, n_clusters=n_clusters, beta=args.beta).to(args.device) + + #for clust_c in [cluster_ind[0]]: #range(args.n_clusters): + # for clust_k in [cluster_ind[1]]: #range(clust_c+1, args.n_clusters): + # print("Cluster"+str(clust_c)+" vs Cluster"+str(clust_k)) + # rel_score1, rel_score2 = model_explainer.calc_carlini_wagner_one_vs_one(clust_c, clust_k, margin=args.margin, lamda=args.lamda, max_iter=args.maxiter, lr=args.lr) + # print(rel_score1.shape) + # print(rel_score2.shape) + # np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_"+str(clust_k)+"_rel_mRNA_scores.csv", rel_score1, delimiter=",") + # np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_"+str(clust_k)+"_rel_ADT_scores.csv", rel_score2, delimiter=",") + + for clust_c in cluster_list: + print("Cluster"+str(clust_c)+" vs Rest") + rel_score1, rel_score2 = model_explainer.calc_carlini_wagner_one_vs_rest(clust_c, margin=args.margin, lamda=args.lamda, max_iter=args.maxiter, lr=args.lr) + np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_rest_rel_mRNA_scores.csv", rel_score1, delimiter=",") + np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_rest_rel_ADT_scores.csv", rel_score2, delimiter=",")