[ac720d]: / src / run_LRP.py

Download this file

169 lines (142 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from time import time
import math, os
from sklearn import metrics
from sklearn.cluster import KMeans
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import Parameter
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from scMDC import scMultiCluster
import numpy as np
import collections
import h5py
import scanpy as sc
from preprocess import read_dataset, normalize, clr_normalize_each_cell
from utils import *
from functools import reduce
from LRP import LRP
if __name__ == "__main__":
# setting the hyper parameters
import argparse
parser = argparse.ArgumentParser(description='train',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--n_clusters', default=8, type=int)
parser.add_argument('--cutoff', default=0.5, type=float, help='Start to train combined layer after what ratio of epoch')
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--data_file', default='Simulation.1.h5')
parser.add_argument('--cluster_index_file', default='label.txt')
parser.add_argument('--maxiter', default=10000, type=int)
parser.add_argument('--pretrain_epochs', default=400, type=int)
parser.add_argument('--gamma', default=.1, type=float,
help='coefficient of clustering loss')
parser.add_argument('--tau', default=1., type=float,
help='fuzziness of clustering loss')
parser.add_argument('--phi1', default=0.001, type=float,
help='coefficient of KL loss in pretraining stage')
parser.add_argument('--phi2', default=0.001, type=float,
help='coefficient of KL loss in clustering stage')
parser.add_argument('--update_interval', default=1, type=int)
parser.add_argument('--tol', default=0.001, type=float)
parser.add_argument('--ae_weights', default=None)
parser.add_argument('--save_dir', default='results/')
parser.add_argument('--ae_weight_file', default='AE_weights_1.pth.tar')
parser.add_argument('--resolution', default=0.2, type=float)
parser.add_argument('--n_neighbors', default=30, type=int)
parser.add_argument('--embedding_file', action='store_true', default=False)
parser.add_argument('--prediction_file', action='store_true', default=False)
parser.add_argument('-el','--encodeLayer', nargs='+', default=[256,64,32,16])
parser.add_argument('-dl1','--decodeLayer1', nargs='+', default=[16,64,256])
parser.add_argument('-dl2','--decodeLayer2', nargs='+', default=[16,20])
parser.add_argument('--sigma1', default=2.5, type=float)
parser.add_argument('--sigma2', default=1.5, type=float)
parser.add_argument('--f1', default=1000, type=float, help='Number of mRNA after feature selection')
parser.add_argument('--f2', default=2000, type=float, help='Number of ADT/ATAC after feature selection')
parser.add_argument('--filter1', action='store_true', default=False, help='Do mRNA selection')
parser.add_argument('--filter2', action='store_true', default=False, help='Do ADT/ATAC selection')
parser.add_argument('--run', default=1, type=int)
parser.add_argument('--beta', default=1., type=float,
help='coefficient of the clustering fuzziness')
parser.add_argument('--margin', default=1., type=float,
help='margin of difference between logits')
parser.add_argument('--lamda', default=100., type=float,
help='coefficient of the clustering perturbation loss')
parser.add_argument('--lr', default=0.001, type=int)
parser.add_argument('--device', default='cuda')
args = parser.parse_args()
print(args)
data_mat = h5py.File(args.data_file)
x1 = np.array(data_mat['X1'])
x2 = np.array(data_mat['X2'])
#y = np.array(data_mat['Y']) - 1
data_mat.close()
clust_ids = np.loadtxt(args.cluster_index_file, delimiter=",").astype(int)
#Gene features
if args.filter1:
importantGenes = geneSelection(x1, n=args.f1, plot=False)
x1 = x1[:, importantGenes]
if args.filter2:
importantGenes = geneSelection(x2, n=args.f2, plot=False)
x2 = x2[:, importantGenes]
adata1 = sc.AnnData(x1)
#adata1.obs['Group'] = y
adata1 = read_dataset(adata1,
transpose=False,
test_split=False,
copy=True)
adata1 = normalize(adata1,
size_factors=True,
normalize_input=True,
logtrans_input=True)
adata2 = sc.AnnData(x2)
#adata2.obs['Group'] = y
adata2 = read_dataset(adata2,
transpose=False,
test_split=False,
copy=True)
adata2 = normalize(adata2,
size_factors=True,
normalize_input=True,
logtrans_input=True)
#adata2 = clr_normalize_each_cell(adata2)
input_size1 = adata1.n_vars
input_size2 = adata2.n_vars
print(adata1.X.shape)
print(adata2.X.shape)
print(args)
encodeLayer = list(map(int, args.encodeLayer))
decodeLayer1 = list(map(int, args.decodeLayer1))
decodeLayer2 = list(map(int, args.decodeLayer2))
model = scMultiCluster(input_dim1=input_size1, input_dim2=input_size2, tau=args.tau,
encodeLayer=encodeLayer, decodeLayer1=decodeLayer1, decodeLayer2=decodeLayer2,
activation='elu', sigma1=args.sigma1, sigma2=args.sigma2, gamma=args.gamma,
cutoff = args.cutoff, phi1=args.phi1, phi2=args.phi2, device=args.device).to(args.device)
print(str(model))
if os.path.isfile(args.ae_weights):
print("==> loading checkpoint '{}'".format(args.ae_weights))
checkpoint = torch.load(args.ae_weights)
model.load_state_dict(checkpoint['ae_state_dict'])
else:
print("==> no checkpoint found at '{}'".format(args.ae_weights))
raise ValueError
n_clusters = np.unique(clust_ids).shape[0]
print("n cluster is: " + str(n_clusters))
Z = model.encodeBatch(torch.tensor(adata1.X).to(args.device), torch.tensor(adata2.X).to(args.device)).data.cpu().numpy()
cluster_list = np.unique(clust_ids).astype(int).tolist()
print(cluster_list)
model_explainer = LRP(model, X1=adata1.X, X2=adata2.X, Z=Z, clust_ids=clust_ids, n_clusters=n_clusters, beta=args.beta).to(args.device)
#for clust_c in [cluster_ind[0]]: #range(args.n_clusters):
# for clust_k in [cluster_ind[1]]: #range(clust_c+1, args.n_clusters):
# print("Cluster"+str(clust_c)+" vs Cluster"+str(clust_k))
# rel_score1, rel_score2 = model_explainer.calc_carlini_wagner_one_vs_one(clust_c, clust_k, margin=args.margin, lamda=args.lamda, max_iter=args.maxiter, lr=args.lr)
# print(rel_score1.shape)
# print(rel_score2.shape)
# np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_"+str(clust_k)+"_rel_mRNA_scores.csv", rel_score1, delimiter=",")
# np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_"+str(clust_k)+"_rel_ADT_scores.csv", rel_score2, delimiter=",")
for clust_c in cluster_list:
print("Cluster"+str(clust_c)+" vs Rest")
rel_score1, rel_score2 = model_explainer.calc_carlini_wagner_one_vs_rest(clust_c, margin=args.margin, lamda=args.lamda, max_iter=args.maxiter, lr=args.lr)
np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_rest_rel_mRNA_scores.csv", rel_score1, delimiter=",")
np.savetxt(args.save_dir + "/" + str(clust_c)+"_vs_rest_rel_ADT_scores.csv", rel_score2, delimiter=",")