|
a |
|
b/test/test_simdeep.py |
|
|
1 |
import unittest |
|
|
2 |
import warnings |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
|
|
|
6 |
from simdeep.config import ACTIVATION |
|
|
7 |
from simdeep.config import OPTIMIZER |
|
|
8 |
from simdeep.config import LOSS |
|
|
9 |
|
|
|
10 |
from os.path import abspath |
|
|
11 |
from os.path import split |
|
|
12 |
|
|
|
13 |
from os.path import isfile |
|
|
14 |
from os.path import isdir |
|
|
15 |
|
|
|
16 |
from os import remove |
|
|
17 |
from shutil import rmtree |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
class TestPackage(unittest.TestCase): |
|
|
21 |
""" """ |
|
|
22 |
def test_1_coxph_function(self): |
|
|
23 |
"""test if the coxph function works """ |
|
|
24 |
from simdeep.coxph_from_r import coxph |
|
|
25 |
|
|
|
26 |
isdead = [0, 1, 1, 1, 0, 1, 0, 0, 1, 0] |
|
|
27 |
nbdays = [24, 10, 25, 50, 14, 10 ,100, 10, 50, 10] |
|
|
28 |
values = [0, 1, 1, 0 , 1, 2, 0, 1, 0, 0] |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
pvalue = coxph(values, isdead, nbdays, isfactor=True) |
|
|
32 |
|
|
|
33 |
self.assertTrue(isinstance(pvalue, float)) |
|
|
34 |
self.assertTrue(pvalue < 0.05) |
|
|
35 |
|
|
|
36 |
def test_4_keras_model_instantiation(self): |
|
|
37 |
""" |
|
|
38 |
test if keras can be loaded and if that a model |
|
|
39 |
can be instanciated |
|
|
40 |
""" |
|
|
41 |
from keras.models import Sequential |
|
|
42 |
from keras.layers import Dense |
|
|
43 |
|
|
|
44 |
dummy_model = Sequential() |
|
|
45 |
dummy_model.add(Dense(10, input_dim=20, |
|
|
46 |
activation=ACTIVATION)) |
|
|
47 |
|
|
|
48 |
dummy_model.compile( |
|
|
49 |
optimizer=OPTIMIZER, loss=LOSS) |
|
|
50 |
|
|
|
51 |
Xmat = np.random.random((50,20)) |
|
|
52 |
Ymat = np.random.random((50,10)) |
|
|
53 |
|
|
|
54 |
dummy_model.fit( |
|
|
55 |
x=Xmat, |
|
|
56 |
y=Ymat) |
|
|
57 |
|
|
|
58 |
def test_5_one_simdeep_instance(self): |
|
|
59 |
""" |
|
|
60 |
test one simdeep instance |
|
|
61 |
""" |
|
|
62 |
from simdeep.simdeep_analysis import SimDeep |
|
|
63 |
from simdeep.extract_data import LoadData |
|
|
64 |
|
|
|
65 |
PATH_DATA = '{0}/../examples/data/'.format(split(abspath(__file__))[0]) |
|
|
66 |
|
|
|
67 |
TRAINING_TSV = {'RNA': 'rna_dummy.tsv', 'METH': 'meth_dummy.tsv', 'MIR': 'mir_dummy.tsv'} |
|
|
68 |
SURVIVAL_TSV = 'survival_dummy.tsv' |
|
|
69 |
|
|
|
70 |
PROJECT_NAME = 'TestProject' |
|
|
71 |
EPOCHS = 3 |
|
|
72 |
|
|
|
73 |
deep_model_additional_args = { |
|
|
74 |
"epochs":EPOCHS, "seed":4} |
|
|
75 |
|
|
|
76 |
dataset = LoadData(path_data=PATH_DATA, |
|
|
77 |
survival_tsv=SURVIVAL_TSV, |
|
|
78 |
training_tsv=TRAINING_TSV) |
|
|
79 |
|
|
|
80 |
simdeep = SimDeep(dataset=dataset, |
|
|
81 |
project_name=PROJECT_NAME, |
|
|
82 |
path_results="{0}/{1}".format(PATH_DATA, PROJECT_NAME), |
|
|
83 |
deep_model_additional_args=deep_model_additional_args, |
|
|
84 |
) |
|
|
85 |
simdeep.load_training_dataset() |
|
|
86 |
simdeep.fit() |
|
|
87 |
simdeep.predict_labels_on_full_dataset() |
|
|
88 |
simdeep.predict_labels_on_test_fold() |
|
|
89 |
|
|
|
90 |
simdeep.load_new_test_dataset( |
|
|
91 |
tsv_dict={'RNA': 'rna_test_dummy.tsv'}, |
|
|
92 |
fname_key='dummy', |
|
|
93 |
path_survival_file='survival_test_dummy.tsv') |
|
|
94 |
|
|
|
95 |
simdeep.predict_labels_on_test_dataset() |
|
|
96 |
|
|
|
97 |
path_fig = '{0}/{1}/{1}_KM_plot_training_dataset.pdf'.format(PATH_DATA, PROJECT_NAME) |
|
|
98 |
|
|
|
99 |
print('#### asserting file: {0} exists'.format(path_fig)) |
|
|
100 |
self.assertTrue(isfile(path_fig)) |
|
|
101 |
|
|
|
102 |
from glob import glob |
|
|
103 |
|
|
|
104 |
for fil in glob('{0}/{1}*'.format(PATH_DATA, PROJECT_NAME)): |
|
|
105 |
if isfile(fil): |
|
|
106 |
remove(fil) |
|
|
107 |
elif isdir(fil): |
|
|
108 |
rmtree(fil) |
|
|
109 |
|
|
|
110 |
def test_6_simdeep_boosting(self): |
|
|
111 |
""" |
|
|
112 |
test simdeep boosting |
|
|
113 |
""" |
|
|
114 |
from simdeep.simdeep_boosting import SimDeepBoosting |
|
|
115 |
|
|
|
116 |
PATH_DATA = '{0}/../examples/data/'.format(split(abspath(__file__))[0]) |
|
|
117 |
|
|
|
118 |
TRAINING_TSV = {'RNA': 'rna_dummy.tsv', 'METH': 'meth_dummy.tsv', 'MIR': 'mir_dummy.tsv'} |
|
|
119 |
SURVIVAL_TSV = 'survival_dummy.tsv' |
|
|
120 |
|
|
|
121 |
PROJECT_NAME = 'TestProject' |
|
|
122 |
EPOCHS = 3 |
|
|
123 |
SEED = 3 |
|
|
124 |
nb_it = 3 |
|
|
125 |
nb_threads = 2 |
|
|
126 |
|
|
|
127 |
boosting = SimDeepBoosting( |
|
|
128 |
nb_threads=nb_threads, |
|
|
129 |
nb_it=nb_it, |
|
|
130 |
survival_tsv=SURVIVAL_TSV, |
|
|
131 |
training_tsv=TRAINING_TSV, |
|
|
132 |
path_data=PATH_DATA, |
|
|
133 |
project_name=PROJECT_NAME, |
|
|
134 |
path_results=PATH_DATA, |
|
|
135 |
epochs=EPOCHS, |
|
|
136 |
normalization={'TRAIN_CORR_REDUCTION':True}, |
|
|
137 |
seed=SEED) |
|
|
138 |
|
|
|
139 |
boosting.partial_fit() |
|
|
140 |
boosting.predict_labels_on_full_dataset() |
|
|
141 |
boosting.compute_clusters_consistency_for_full_labels() |
|
|
142 |
boosting.evalutate_cluster_performance() |
|
|
143 |
boosting.collect_cindex_for_test_fold() |
|
|
144 |
boosting.collect_cindex_for_full_dataset() |
|
|
145 |
|
|
|
146 |
boosting.load_new_test_dataset( |
|
|
147 |
tsv_dict={'RNA': 'rna_test_dummy.tsv'}, |
|
|
148 |
fname_key='dummy', |
|
|
149 |
path_survival_file='survival_test_dummy.tsv', |
|
|
150 |
normalization={'TRAIN_NORM_SCALE':True}, |
|
|
151 |
) |
|
|
152 |
|
|
|
153 |
boosting.predict_labels_on_test_dataset() |
|
|
154 |
boosting.predict_labels_on_test_dataset() |
|
|
155 |
boosting.compute_c_indexes_for_test_dataset() |
|
|
156 |
boosting.compute_clusters_consistency_for_test_labels() |
|
|
157 |
|
|
|
158 |
from glob import glob |
|
|
159 |
|
|
|
160 |
for fil in glob('{0}/{1}*'.format(PATH_DATA, PROJECT_NAME)): |
|
|
161 |
if isfile(fil): |
|
|
162 |
remove(fil) |
|
|
163 |
elif isdir(fil): |
|
|
164 |
rmtree(fil) |
|
|
165 |
|
|
|
166 |
|
|
|
167 |
if __name__ == "__main__": |
|
|
168 |
unittest.main() |