[53737a]: / test / test_simdeep.py

Download this file

169 lines (127 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import unittest
import warnings
import numpy as np
from simdeep.config import ACTIVATION
from simdeep.config import OPTIMIZER
from simdeep.config import LOSS
from os.path import abspath
from os.path import split
from os.path import isfile
from os.path import isdir
from os import remove
from shutil import rmtree
class TestPackage(unittest.TestCase):
""" """
def test_1_coxph_function(self):
"""test if the coxph function works """
from simdeep.coxph_from_r import coxph
isdead = [0, 1, 1, 1, 0, 1, 0, 0, 1, 0]
nbdays = [24, 10, 25, 50, 14, 10 ,100, 10, 50, 10]
values = [0, 1, 1, 0 , 1, 2, 0, 1, 0, 0]
pvalue = coxph(values, isdead, nbdays, isfactor=True)
self.assertTrue(isinstance(pvalue, float))
self.assertTrue(pvalue < 0.05)
def test_4_keras_model_instantiation(self):
"""
test if keras can be loaded and if that a model
can be instanciated
"""
from keras.models import Sequential
from keras.layers import Dense
dummy_model = Sequential()
dummy_model.add(Dense(10, input_dim=20,
activation=ACTIVATION))
dummy_model.compile(
optimizer=OPTIMIZER, loss=LOSS)
Xmat = np.random.random((50,20))
Ymat = np.random.random((50,10))
dummy_model.fit(
x=Xmat,
y=Ymat)
def test_5_one_simdeep_instance(self):
"""
test one simdeep instance
"""
from simdeep.simdeep_analysis import SimDeep
from simdeep.extract_data import LoadData
PATH_DATA = '{0}/../examples/data/'.format(split(abspath(__file__))[0])
TRAINING_TSV = {'RNA': 'rna_dummy.tsv', 'METH': 'meth_dummy.tsv', 'MIR': 'mir_dummy.tsv'}
SURVIVAL_TSV = 'survival_dummy.tsv'
PROJECT_NAME = 'TestProject'
EPOCHS = 3
deep_model_additional_args = {
"epochs":EPOCHS, "seed":4}
dataset = LoadData(path_data=PATH_DATA,
survival_tsv=SURVIVAL_TSV,
training_tsv=TRAINING_TSV)
simdeep = SimDeep(dataset=dataset,
project_name=PROJECT_NAME,
path_results="{0}/{1}".format(PATH_DATA, PROJECT_NAME),
deep_model_additional_args=deep_model_additional_args,
)
simdeep.load_training_dataset()
simdeep.fit()
simdeep.predict_labels_on_full_dataset()
simdeep.predict_labels_on_test_fold()
simdeep.load_new_test_dataset(
tsv_dict={'RNA': 'rna_test_dummy.tsv'},
fname_key='dummy',
path_survival_file='survival_test_dummy.tsv')
simdeep.predict_labels_on_test_dataset()
path_fig = '{0}/{1}/{1}_KM_plot_training_dataset.pdf'.format(PATH_DATA, PROJECT_NAME)
print('#### asserting file: {0} exists'.format(path_fig))
self.assertTrue(isfile(path_fig))
from glob import glob
for fil in glob('{0}/{1}*'.format(PATH_DATA, PROJECT_NAME)):
if isfile(fil):
remove(fil)
elif isdir(fil):
rmtree(fil)
def test_6_simdeep_boosting(self):
"""
test simdeep boosting
"""
from simdeep.simdeep_boosting import SimDeepBoosting
PATH_DATA = '{0}/../examples/data/'.format(split(abspath(__file__))[0])
TRAINING_TSV = {'RNA': 'rna_dummy.tsv', 'METH': 'meth_dummy.tsv', 'MIR': 'mir_dummy.tsv'}
SURVIVAL_TSV = 'survival_dummy.tsv'
PROJECT_NAME = 'TestProject'
EPOCHS = 3
SEED = 3
nb_it = 3
nb_threads = 2
boosting = SimDeepBoosting(
nb_threads=nb_threads,
nb_it=nb_it,
survival_tsv=SURVIVAL_TSV,
training_tsv=TRAINING_TSV,
path_data=PATH_DATA,
project_name=PROJECT_NAME,
path_results=PATH_DATA,
epochs=EPOCHS,
normalization={'TRAIN_CORR_REDUCTION':True},
seed=SEED)
boosting.partial_fit()
boosting.predict_labels_on_full_dataset()
boosting.compute_clusters_consistency_for_full_labels()
boosting.evalutate_cluster_performance()
boosting.collect_cindex_for_test_fold()
boosting.collect_cindex_for_full_dataset()
boosting.load_new_test_dataset(
tsv_dict={'RNA': 'rna_test_dummy.tsv'},
fname_key='dummy',
path_survival_file='survival_test_dummy.tsv',
normalization={'TRAIN_NORM_SCALE':True},
)
boosting.predict_labels_on_test_dataset()
boosting.predict_labels_on_test_dataset()
boosting.compute_c_indexes_for_test_dataset()
boosting.compute_clusters_consistency_for_test_labels()
from glob import glob
for fil in glob('{0}/{1}*'.format(PATH_DATA, PROJECT_NAME)):
if isfile(fil):
remove(fil)
elif isdir(fil):
rmtree(fil)
if __name__ == "__main__":
unittest.main()