--- a +++ b/R/amaretto_vizualize.R @@ -0,0 +1,161 @@ +#' AMARETTO_VisualizeModule +#' +#' Function to visualize the gene modules +#' +#' @param AMARETTOinit List output from AMARETTO_Initialize(). +#' @param AMARETTOresults List output from AMARETTO_Run(). +#' @param ProcessedData List of processed input data +#' @param ModuleNr Module number to visualize +#' @param SAMPLE_annotation Matrix or Dataframe with sample annotation +#' @param ID Column used as sample name +#' @param show_row_names If TRUE, row names will be shown on the plot. +#' @param order_samples Order samples in heatmap by mean or by clustering +#' +#' @importFrom circlize colorRamp2 rand_color +#' @importFrom grid gpar unit +#' @importFrom stats dist hclust +#' @importFrom dplyr left_join mutate select summarise rename filter case_when +#' @import grDevices +#' @import methods +#' @importFrom ComplexHeatmap HeatmapAnnotation Heatmap draw +#' @importFrom tibble column_to_rownames rownames_to_column +#' @return result +#' @export +#' +#' @examples +#' data('ProcessedDataLIHC') +#' AMARETTOinit <- AMARETTO_Initialize(ProcessedData = ProcessedDataLIHC, +#' NrModules = 2, VarPercentage = 50) +#' +#' AMARETTOresults <- AMARETTO_Run(AMARETTOinit) +#' +#' AMARETTO_VisualizeModule(AMARETTOinit = AMARETTOinit,AMARETTOresults = AMARETTOresults, +#' ProcessedData = ProcessedDataLIHC, ModuleNr = 1) +AMARETTO_VisualizeModule <- function(AMARETTOinit,AMARETTOresults,ProcessedData,ModuleNr,show_row_names=FALSE, SAMPLE_annotation=NULL,ID=NULL,order_samples=NULL) { + CNV_matrix <- ProcessedData[[2]] + MET_matrix <- ProcessedData[[3]] + CNVMet_Alterations <- DriversList_Alterations <- MET <- HGNC_symbol <- CNV <- NULL + if (ModuleNr>AMARETTOresults$NrModules){ + stop('\tCannot plot Module',ModuleNr,' since the total number of modules is',AMARETTOresults$N,'.\n') + } + ModuleData<-as.data.frame(AMARETTOinit$MA_matrix_Var)[AMARETTOresults$ModuleMembership==ModuleNr,] + ModuleRegulators <- AMARETTOresults$AllRegulators[which(AMARETTOresults$RegulatoryPrograms[ModuleNr,] != 0)] + RegulatorData <- as.data.frame(AMARETTOinit$RegulatorData)[ModuleRegulators,] + ModuleGenes <- rownames(ModuleData) + cat('Module',ModuleNr,'has',length(rownames(ModuleData)),'genes and',length(ModuleRegulators),'regulators for',length(colnames(ModuleData)),'samples.\n') + Alterations<- tibble::rownames_to_column(as.data.frame(AMARETTOinit$RegulatorAlterations$Summary),"HGNC_symbol") %>% dplyr::rename(DriverList="Driver List") %>% dplyr::filter(HGNC_symbol %in% ModuleRegulators) + Alterations<- Alterations %>% dplyr::mutate(CNVMet_Alterations=case_when(MET==1 & CNV==1~"Methylation and copy number alterations", + CNV==1~"Copy number alterations", + MET==1~"Methylation aberrations", + MET==0 & CNV==0 ~"Not Altered"), + DriversList_Alterations=case_when(DriverList==0~"Driver not predefined", + DriverList==1~"Driver predefined")) + + ha_drivers <- ComplexHeatmap::HeatmapAnnotation(df = tibble::column_to_rownames(Alterations,"HGNC_symbol") %>% dplyr::select(CNVMet_Alterations,DriversList_Alterations), col = list(CNVMet_Alterations= c("Copy number alterations"="#eca400","Methylation aberrations"="#006992","Methylation and copy number alterations"="#d95d39","Not Altered"="lightgray"),DriversList_Alterations=c("Driver not predefined"="lightgray","Driver predefined"="#588B5B")),which = "column", height = grid::unit(0.3, "cm"),name="", + annotation_legend_param = list(title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6))) + + overlapping_samples <- colnames(ModuleData) + + # Add NAs for Gene Expression samples not existing in CNV or MET data + + if (!is.null(CNV_matrix)){ + non_CNV_sample_names<- overlapping_samples[!overlapping_samples%in%colnames(CNV_matrix)] + print(non_CNV_sample_names) + print(nrow(CNV_matrix)) + print(length(non_CNV_sample_names)) + CNV_extension_mat<- matrix(data=NA,nrow=nrow(CNV_matrix),ncol=length(non_CNV_sample_names)) + colnames(CNV_extension_mat)<-non_CNV_sample_names + CNV_matrix<-cbind(CNV_matrix,CNV_extension_mat) + } + if (!is.null(MET_matrix)){ + non_MET_sample_names<- overlapping_samples[!overlapping_samples%in%colnames(MET_matrix)] + MET_extension_mat<- matrix(data=NA,nrow=nrow(MET_matrix),ncol=length(non_MET_sample_names)) + colnames(MET_extension_mat)<-non_MET_sample_names + MET_matrix<-cbind(MET_matrix,MET_extension_mat) + } + + if(is.null(order_samples)){ + overlapping_samples_clust<-overlapping_samples[order(colMeans(ModuleData[,overlapping_samples]))] + }else if(order_samples=="clust"){ + SampleClustering<-stats::hclust(stats::dist(t(ModuleData[,overlapping_samples])), method = "complete", members = NULL) + overlapping_samples_clust<-overlapping_samples[SampleClustering$order] + }else { + print("ordering type not recognized, samples will be orderd based on mean expression of the module genes") + overlapping_samples_clust<-overlapping_samples[order(colMeans(ModuleData[,overlapping_samples]))] + } + + ClustRegulatorData <- t(RegulatorData[,overlapping_samples_clust]) + ClustModuleData <- t(ModuleData[,overlapping_samples_clust]) + + if(length(ClustModuleData)<50){ + fontsizeMo=6 + } else if (length(ClustModuleData)<200){ + fontsizeMo=4 + } else {fontsizeMo=2} + + Regwidth <- ncol(ClustRegulatorData)*0.5 + ha_Reg <- Heatmap(ClustRegulatorData, name = "Gene Expression", column_title = "Regulator Genes\nExpression",cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=FALSE,column_names_gp = grid::gpar(fontsize = fontsizeMo),top_annotation = ha_drivers, + column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"), col=circlize::colorRamp2(c(-max(abs(ClustRegulatorData)), 0, max(abs(ClustRegulatorData))), c("darkblue", "white", "darkred")),heatmap_legend_param = list(color_bar = "continuous",legend_direction = "horizontal",title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)), width = grid::unit(Regwidth, "cm")) + + + ha_Module <- Heatmap(ClustModuleData, name = " ", column_title = "Target Genes\nExpression",cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=show_row_names,column_names_gp = grid::gpar(fontsize = fontsizeMo),show_heatmap_legend = FALSE, + column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"), col=circlize::colorRamp2(c(-max(abs(ClustModuleData)), 0, max(abs(ClustModuleData))), c("darkblue", "white", "darkred")),heatmap_legend_param = list(color_bar = "continuous",legend_direction = "horizontal",title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6))) + + ha_list<- ha_Reg + ha_Module + if (!is.null(MET_matrix)){ + METreg <- intersect(rownames(AMARETTOinit$RegulatorAlterations$MET),ModuleRegulators) + print("MET regulators will be included when available") + if (length(METreg)>0){ + MET_matrix = as.data.frame(MET_matrix) + METData2 = METData = as.matrix(MET_matrix[unlist(Alterations %>% dplyr::filter(MET==1) %>% dplyr::select(HGNC_symbol)),overlapping_samples_clust]) + METData2[which(METData>0)] <- "Hyper-methylated" # hyper + METData2[which(METData<0)] <- "Hypo-methylated" # hypo + METData2[which(METData==0)] <- "Not altered" # nothing + METData2<-t(METData2) + Metwidth=ncol(METData2)*0.7 + Met_col=structure(c("#006992","#d95d39","white"),names=c("Hyper-methylated","Hypo-methylated","Not altered")) + ha_Met <- Heatmap(METData2, name = "Methylation State", column_title = "Methylation", cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=FALSE,column_names_gp = grid::gpar(fontsize = 6),show_heatmap_legend = TRUE, + column_title_gp = gpar(fontsize = 6, fontface = "bold"), col = Met_col, width = grid::unit(Metwidth, "cm"),heatmap_legend_param = list(title_gp = gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6))) + ha_list<- ha_Met + ha_list + } + } + + if (!is.null(CNV_matrix)){ + CNVreg <- intersect(rownames(AMARETTOinit$RegulatorAlterations$CNV),ModuleRegulators) + print("CNV regulators will be included when available") + if (length(CNVreg)>0){ + CNV_matrix = as.data.frame(CNV_matrix) + CNVData2 = CNVData = as.matrix(CNV_matrix[unlist(Alterations %>% dplyr::filter(CNV==1) %>% dplyr::select(HGNC_symbol)),overlapping_samples_clust]) + CNVData2[which(CNVData>=0.1)] <- "Amplified" # amplification + CNVData2[which(CNVData<=(-0.1))] <- "Deleted" # deletion + CNVData2[which(CNVData<0.1 & CNVData>(-0.1))] <- "Not altered" # nothing + CNVData2<-t(CNVData2) + CNVwidth=ncol(CNVData2)*0.7 + CNV_col=structure(c("#006992","#d95d39","white"),names=c("Deleted","Amplified","Not altered")) + ha_CNV <- Heatmap(CNVData2, name = "CNV State", column_title = "CNV", cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=FALSE,column_names_gp = grid::gpar(fontsize = 6),show_heatmap_legend = TRUE, + column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"),col = CNV_col,width = grid::unit(CNVwidth, "cm"),heatmap_legend_param = list(title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6))) + ha_list<-ha_CNV + ha_list + } + } + + if (!is.null(SAMPLE_annotation)){ + if (ID %in% colnames(SAMPLE_annotation)){ + SAMPLE_annotation_fil<-as.data.frame(SAMPLE_annotation) %>% dplyr::filter(!!as.name(ID) %in% overlapping_samples_clust) + suppressWarnings(SAMPLE_annotation_fil<-dplyr::left_join(as.data.frame(overlapping_samples_clust),SAMPLE_annotation_fil,by=c("overlapping_samples_clust"=ID))) + SAMPLE_annotation_fil<-tibble::column_to_rownames(SAMPLE_annotation_fil,"overlapping_samples_clust") + cat(nrow(SAMPLE_annotation_fil),"samples have an annotation.\n") + cat(ncol(SAMPLE_annotation_fil),"annotations are added") + #define colors + col<-c() + for (sample_column in colnames(SAMPLE_annotation_fil)[colnames(SAMPLE_annotation_fil) != ID]){ + newcol<-circlize::rand_color(n=length(unique(SAMPLE_annotation_fil[,sample_column])),luminosity = "bright") + names(newcol)<-unique(SAMPLE_annotation_fil[,sample_column]) + col<-c(col,newcol) + } + ha_anot<-Heatmap(SAMPLE_annotation_fil, name="Sample Annotation", column_title = "Sample\nAnnotation", column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"), col=col, show_row_names=FALSE,width = unit(ncol(SAMPLE_annotation_fil) * 2, "mm"), + column_names_gp = gpar(fontsize = 6),heatmap_legend_param = list(title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6))) + ha_list<-ha_list + ha_anot + } else {print("The ID is not identified as a column name in the annotation")} + } + ComplexHeatmap::draw(ha_list,heatmap_legend_side = "bottom",annotation_legend_side="bottom") +}