[2ab972]: / R / amaretto_vizualize.R

Download this file

162 lines (148 with data), 11.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#' AMARETTO_VisualizeModule
#'
#' Function to visualize the gene modules
#'
#' @param AMARETTOinit List output from AMARETTO_Initialize().
#' @param AMARETTOresults List output from AMARETTO_Run().
#' @param ProcessedData List of processed input data
#' @param ModuleNr Module number to visualize
#' @param SAMPLE_annotation Matrix or Dataframe with sample annotation
#' @param ID Column used as sample name
#' @param show_row_names If TRUE, row names will be shown on the plot.
#' @param order_samples Order samples in heatmap by mean or by clustering
#'
#' @importFrom circlize colorRamp2 rand_color
#' @importFrom grid gpar unit
#' @importFrom stats dist hclust
#' @importFrom dplyr left_join mutate select summarise rename filter case_when
#' @import grDevices
#' @import methods
#' @importFrom ComplexHeatmap HeatmapAnnotation Heatmap draw
#' @importFrom tibble column_to_rownames rownames_to_column
#' @return result
#' @export
#'
#' @examples
#' data('ProcessedDataLIHC')
#' AMARETTOinit <- AMARETTO_Initialize(ProcessedData = ProcessedDataLIHC,
#' NrModules = 2, VarPercentage = 50)
#'
#' AMARETTOresults <- AMARETTO_Run(AMARETTOinit)
#'
#' AMARETTO_VisualizeModule(AMARETTOinit = AMARETTOinit,AMARETTOresults = AMARETTOresults,
#' ProcessedData = ProcessedDataLIHC, ModuleNr = 1)
AMARETTO_VisualizeModule <- function(AMARETTOinit,AMARETTOresults,ProcessedData,ModuleNr,show_row_names=FALSE, SAMPLE_annotation=NULL,ID=NULL,order_samples=NULL) {
CNV_matrix <- ProcessedData[[2]]
MET_matrix <- ProcessedData[[3]]
CNVMet_Alterations <- DriversList_Alterations <- MET <- HGNC_symbol <- CNV <- NULL
if (ModuleNr>AMARETTOresults$NrModules){
stop('\tCannot plot Module',ModuleNr,' since the total number of modules is',AMARETTOresults$N,'.\n')
}
ModuleData<-as.data.frame(AMARETTOinit$MA_matrix_Var)[AMARETTOresults$ModuleMembership==ModuleNr,]
ModuleRegulators <- AMARETTOresults$AllRegulators[which(AMARETTOresults$RegulatoryPrograms[ModuleNr,] != 0)]
RegulatorData <- as.data.frame(AMARETTOinit$RegulatorData)[ModuleRegulators,]
ModuleGenes <- rownames(ModuleData)
cat('Module',ModuleNr,'has',length(rownames(ModuleData)),'genes and',length(ModuleRegulators),'regulators for',length(colnames(ModuleData)),'samples.\n')
Alterations<- tibble::rownames_to_column(as.data.frame(AMARETTOinit$RegulatorAlterations$Summary),"HGNC_symbol") %>% dplyr::rename(DriverList="Driver List") %>% dplyr::filter(HGNC_symbol %in% ModuleRegulators)
Alterations<- Alterations %>% dplyr::mutate(CNVMet_Alterations=case_when(MET==1 & CNV==1~"Methylation and copy number alterations",
CNV==1~"Copy number alterations",
MET==1~"Methylation aberrations",
MET==0 & CNV==0 ~"Not Altered"),
DriversList_Alterations=case_when(DriverList==0~"Driver not predefined",
DriverList==1~"Driver predefined"))
ha_drivers <- ComplexHeatmap::HeatmapAnnotation(df = tibble::column_to_rownames(Alterations,"HGNC_symbol") %>% dplyr::select(CNVMet_Alterations,DriversList_Alterations), col = list(CNVMet_Alterations= c("Copy number alterations"="#eca400","Methylation aberrations"="#006992","Methylation and copy number alterations"="#d95d39","Not Altered"="lightgray"),DriversList_Alterations=c("Driver not predefined"="lightgray","Driver predefined"="#588B5B")),which = "column", height = grid::unit(0.3, "cm"),name="",
annotation_legend_param = list(title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)))
overlapping_samples <- colnames(ModuleData)
# Add NAs for Gene Expression samples not existing in CNV or MET data
if (!is.null(CNV_matrix)){
non_CNV_sample_names<- overlapping_samples[!overlapping_samples%in%colnames(CNV_matrix)]
print(non_CNV_sample_names)
print(nrow(CNV_matrix))
print(length(non_CNV_sample_names))
CNV_extension_mat<- matrix(data=NA,nrow=nrow(CNV_matrix),ncol=length(non_CNV_sample_names))
colnames(CNV_extension_mat)<-non_CNV_sample_names
CNV_matrix<-cbind(CNV_matrix,CNV_extension_mat)
}
if (!is.null(MET_matrix)){
non_MET_sample_names<- overlapping_samples[!overlapping_samples%in%colnames(MET_matrix)]
MET_extension_mat<- matrix(data=NA,nrow=nrow(MET_matrix),ncol=length(non_MET_sample_names))
colnames(MET_extension_mat)<-non_MET_sample_names
MET_matrix<-cbind(MET_matrix,MET_extension_mat)
}
if(is.null(order_samples)){
overlapping_samples_clust<-overlapping_samples[order(colMeans(ModuleData[,overlapping_samples]))]
}else if(order_samples=="clust"){
SampleClustering<-stats::hclust(stats::dist(t(ModuleData[,overlapping_samples])), method = "complete", members = NULL)
overlapping_samples_clust<-overlapping_samples[SampleClustering$order]
}else {
print("ordering type not recognized, samples will be orderd based on mean expression of the module genes")
overlapping_samples_clust<-overlapping_samples[order(colMeans(ModuleData[,overlapping_samples]))]
}
ClustRegulatorData <- t(RegulatorData[,overlapping_samples_clust])
ClustModuleData <- t(ModuleData[,overlapping_samples_clust])
if(length(ClustModuleData)<50){
fontsizeMo=6
} else if (length(ClustModuleData)<200){
fontsizeMo=4
} else {fontsizeMo=2}
Regwidth <- ncol(ClustRegulatorData)*0.5
ha_Reg <- Heatmap(ClustRegulatorData, name = "Gene Expression", column_title = "Regulator Genes\nExpression",cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=FALSE,column_names_gp = grid::gpar(fontsize = fontsizeMo),top_annotation = ha_drivers,
column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"), col=circlize::colorRamp2(c(-max(abs(ClustRegulatorData)), 0, max(abs(ClustRegulatorData))), c("darkblue", "white", "darkred")),heatmap_legend_param = list(color_bar = "continuous",legend_direction = "horizontal",title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)), width = grid::unit(Regwidth, "cm"))
ha_Module <- Heatmap(ClustModuleData, name = " ", column_title = "Target Genes\nExpression",cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=show_row_names,column_names_gp = grid::gpar(fontsize = fontsizeMo),show_heatmap_legend = FALSE,
column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"), col=circlize::colorRamp2(c(-max(abs(ClustModuleData)), 0, max(abs(ClustModuleData))), c("darkblue", "white", "darkred")),heatmap_legend_param = list(color_bar = "continuous",legend_direction = "horizontal",title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)))
ha_list<- ha_Reg + ha_Module
if (!is.null(MET_matrix)){
METreg <- intersect(rownames(AMARETTOinit$RegulatorAlterations$MET),ModuleRegulators)
print("MET regulators will be included when available")
if (length(METreg)>0){
MET_matrix = as.data.frame(MET_matrix)
METData2 = METData = as.matrix(MET_matrix[unlist(Alterations %>% dplyr::filter(MET==1) %>% dplyr::select(HGNC_symbol)),overlapping_samples_clust])
METData2[which(METData>0)] <- "Hyper-methylated" # hyper
METData2[which(METData<0)] <- "Hypo-methylated" # hypo
METData2[which(METData==0)] <- "Not altered" # nothing
METData2<-t(METData2)
Metwidth=ncol(METData2)*0.7
Met_col=structure(c("#006992","#d95d39","white"),names=c("Hyper-methylated","Hypo-methylated","Not altered"))
ha_Met <- Heatmap(METData2, name = "Methylation State", column_title = "Methylation", cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=FALSE,column_names_gp = grid::gpar(fontsize = 6),show_heatmap_legend = TRUE,
column_title_gp = gpar(fontsize = 6, fontface = "bold"), col = Met_col, width = grid::unit(Metwidth, "cm"),heatmap_legend_param = list(title_gp = gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)))
ha_list<- ha_Met + ha_list
}
}
if (!is.null(CNV_matrix)){
CNVreg <- intersect(rownames(AMARETTOinit$RegulatorAlterations$CNV),ModuleRegulators)
print("CNV regulators will be included when available")
if (length(CNVreg)>0){
CNV_matrix = as.data.frame(CNV_matrix)
CNVData2 = CNVData = as.matrix(CNV_matrix[unlist(Alterations %>% dplyr::filter(CNV==1) %>% dplyr::select(HGNC_symbol)),overlapping_samples_clust])
CNVData2[which(CNVData>=0.1)] <- "Amplified" # amplification
CNVData2[which(CNVData<=(-0.1))] <- "Deleted" # deletion
CNVData2[which(CNVData<0.1 & CNVData>(-0.1))] <- "Not altered" # nothing
CNVData2<-t(CNVData2)
CNVwidth=ncol(CNVData2)*0.7
CNV_col=structure(c("#006992","#d95d39","white"),names=c("Deleted","Amplified","Not altered"))
ha_CNV <- Heatmap(CNVData2, name = "CNV State", column_title = "CNV", cluster_rows=FALSE,cluster_columns=TRUE,show_column_dend=FALSE,show_column_names=TRUE,show_row_names=FALSE,column_names_gp = grid::gpar(fontsize = 6),show_heatmap_legend = TRUE,
column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"),col = CNV_col,width = grid::unit(CNVwidth, "cm"),heatmap_legend_param = list(title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)))
ha_list<-ha_CNV + ha_list
}
}
if (!is.null(SAMPLE_annotation)){
if (ID %in% colnames(SAMPLE_annotation)){
SAMPLE_annotation_fil<-as.data.frame(SAMPLE_annotation) %>% dplyr::filter(!!as.name(ID) %in% overlapping_samples_clust)
suppressWarnings(SAMPLE_annotation_fil<-dplyr::left_join(as.data.frame(overlapping_samples_clust),SAMPLE_annotation_fil,by=c("overlapping_samples_clust"=ID)))
SAMPLE_annotation_fil<-tibble::column_to_rownames(SAMPLE_annotation_fil,"overlapping_samples_clust")
cat(nrow(SAMPLE_annotation_fil),"samples have an annotation.\n")
cat(ncol(SAMPLE_annotation_fil),"annotations are added")
#define colors
col<-c()
for (sample_column in colnames(SAMPLE_annotation_fil)[colnames(SAMPLE_annotation_fil) != ID]){
newcol<-circlize::rand_color(n=length(unique(SAMPLE_annotation_fil[,sample_column])),luminosity = "bright")
names(newcol)<-unique(SAMPLE_annotation_fil[,sample_column])
col<-c(col,newcol)
}
ha_anot<-Heatmap(SAMPLE_annotation_fil, name="Sample Annotation", column_title = "Sample\nAnnotation", column_title_gp = grid::gpar(fontsize = 6, fontface = "bold"), col=col, show_row_names=FALSE,width = unit(ncol(SAMPLE_annotation_fil) * 2, "mm"),
column_names_gp = gpar(fontsize = 6),heatmap_legend_param = list(title_gp = grid::gpar(fontsize = 8),labels_gp = grid::gpar(fontsize = 6)))
ha_list<-ha_list + ha_anot
} else {print("The ID is not identified as a column name in the annotation")}
}
ComplexHeatmap::draw(ha_list,heatmap_legend_side = "bottom",annotation_legend_side="bottom")
}