[4f740a]: / deep_learning_multiscale_lstm_fig1.m

Download this file

150 lines (126 with data), 5.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
%% plot roc curves
clear
close all
load('\multi-lstm-summary-clinical_avg.mat','mean_curve_all','mean_curve_seperate_all','auc_micro','auc_micro_std','prob_all','label_all');
time_step = 6;
time_range = 12:time_step:72;
intervals= linspace(0, 1, 100);
colormaps = [{'[128,128,128]/255'};{'[0, 213, 255]/255'};{'[149, 0, 255]/255'};{'[123, 255, 0]/255'};{'[1,0,0]'};{'[0,0,1]'}];
count = 1;
for time_points = 66%12:12:72
index = find(time_range==time_points);
auc_micro(index);
mean_curve = mean_curve_all{index};
mean_curve_seperate = mean_curve_seperate_all{index};
ySEM = std(mean_curve_seperate)/sqrt(size(mean_curve_seperate,1)); % Compute Standard Error Of The Mean Of All Experiments At Each Value Of x
CI95 = tinv([0.025 0.975], size(mean_curve_seperate,1)-1); % Calculate 95% Probability Intervals Of t-Distribution
yCI95 = bsxfun(@times, ySEM, CI95(:)); % Calculate 95% Confidence Intervals Of All Experiments At Each Value Of x
% x is a vector, matrix, or any numeric array of data. NaNs are ignored.
% p is the confidence level (ie, 95 for 95% CI)
% The output is 1x2 vector showing the [lower,upper] interval values.
CIFcn = @(x,p)prctile(x,abs([0,100]-(100-p)/2));
auc_boostrap = [];
num_boostrap = 1000;
for iboost = 1:num_boostrap
[labels, idx] = datasample(label_all{index},length(label_all{index}));
preds = prob_all{index}(idx);
[X_tmp,Y_tmp,T_tmp,AUC_tmp] = perfcurve(labels-1,preds,false);
auc_boostrap = [auc_boostrap; AUC_tmp];
end
p = 95;
CI = CIFcn(auc_boostrap,p);
% figure,
eval(['[l',num2str(count),', p] = boundedline(intervals, mean_curve, ySEM,''cmap'',' colormaps{count}, ',''alpha'')']);% -b r 'cmap', [123, 255, 0]/255 [149, 0, 255]/255 [0, 213, 255]/255 [128,128,128]/255
% h1 = outlinebounds(l,p);
hold on
%
% plot(intervals, mean_curve,'-r','linewidth',2);
axis square
box on
grid on
title('Average ROC Curves at Different Time Intervals')
xlabel('1-Specificity')
ylabel('Sensitivity')
% hold off
temp = [num2str(time_points),' h ',num2str(round(auc_micro(index),2)),' (',num2str(round(CI(1),2)),',' num2str(round(CI(2),2)),')'];
legend_disp{count} = temp;
% eval(['legend(l',num2str(index),',','''',legend_disp,'''',')'])
% legend boxoff
count = count+1;
end
legend([l1 l2 l3 l4 l5 l6],legend_disp)
legend boxoff
plot(intervals, intervals, 'k--')
%%
num_pts =[];
for i = 1:11
num_pts = [num_pts; size(label_all{i},1)];
end
figure, bar(num_pts);
set(gca,'xticklabel',num2cell(12:6:72));
xlabel('Hours After Cardiac Arrest');
ylabel('Number of Patients')
%% calibration curves
close all
clear
load('D:\Research\Cardiac_arrest_EEG\Codes\ComaPrognosticanUsingEEG-master\multiscale-lstm\multi-lstm-summary-clinical_avg.mat','mean_curve_all','mean_curve_seperate_all','auc_micro','auc_micro_std','prob_all','label_all');
time_step = 6;
time_range = 12:time_step:72;
intervals= linspace(0, 1, 100);
colormaps = [{'[128,128,128]/255'};{'[0, 213, 255]/255'};{'[149, 0, 255]/255'};{'[123, 255, 0]/255'};{'[1,0,0]'};{'[0,0,1]'}];
count = 1;
for time_points = 12:12:72
index = find(time_range==time_points);
yp = prob_all{index};
y = label_all{index};
y(y==2)=0;
% x is a vector, matrix, or any numeric array of data. NaNs are ignored.
% p is the confidence level (ie, 95 for 95% CI)
% The output is 1x2 vector showing the [lower,upper] interval values.
CIFcn = @(x,p)prctile(x,abs([0,100]-(100-p)/2));
M = 10;
xx = linspace(0, 1, M+1);
yy = [];
for k = 1:M
y_k = y(yp>=xx(k) & yp<xx(k+1));
yy(k) = sum(y_k)/length(y_k);
end
xx = linspace(0, 1, M+1);
xx = (xx(1:M)+xx(2:end))/2;
Brier_mean(index) = nansum(abs(xx-yy))/sum(~isnan(yy)); %% Brier's Score
hold on
eval(['l', num2str(count),' = plot(xx, yy,''Color'',',colormaps{count}, ',''linewidth'',2);']);
xx = linspace(0, 1, M+1);
Brier_boostrap = [];
num_boostrap = 1000;
for iboost = 1:num_boostrap
[labels, idx] = datasample(label_all{index},length(label_all{index}));
yp = prob_all{index}(idx);
yy = [];
xx = linspace(0, 1, M+1);
for k = 1:M
y_k = y(yp>=xx(k) & yp<xx(k+1));
yy(k) = sum(y_k)/length(y_k);
end
xx = linspace(0, 1, M+1);
xx = (xx(1:M)+xx(2:end))/2;
Brier_boostrap(iboost) = nansum(abs(xx-yy))/sum(~isnan(yy));
end
p = 95;
CI = CIFcn(Brier_boostrap,p);
axis square
box on
grid on
title('Calibration')
xlabel('Prediction')
ylabel('Proportion of the positive')
temp = [num2str(time_points),' h ',num2str(round(Brier_mean(index),2)),' (',num2str(round(CI(1),2)),',' num2str(round(CI(2),2)),')'];
legend_disp{count} = temp;
% eval(['legend(l',num2str(index),',','''',legend_disp,'''',')'])
% legend boxoff
count = count+1;
end
xx = linspace(0, 1, M+1);
plot(xx, xx, 'k--')
legend([l1 l2 l3 l4 l5 l6],legend_disp)
legend boxoff