[696a78]: / Supporting Functions / lyapunov.m

Download this file

53 lines (46 with data), 1.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function lam = lyapunov(x,Fs)
% calculate lyapunov coefficient of time series
%x = sin(1:dt:10)'; % this is 68.83
%x = (1:dt:10)'; % this is 0
%x = randn(1001,1); % this is ~300
%x = squeeze(EEG.data(1,1:1001,1))'; %this is 241.
dt = 1/Fs;
[ndata nvars]=size(x);
steps_forward = 5;
N2 = floor(ndata/2);
N4 = floor(ndata/4);
TOL = 1.0e-6;
exponent = zeros(N4+1,1);
tic
for i=N4:N2 % second quartile of data should be sufficiently evolved
%get all points but this one.
js = setdiff(1:ndata-steps_forward,i);
%find the index of the nearest neighbor
[idx] = knnsearch(x(js,:),x(i,:));
indx = js(idx);
% tic
% dist = norm(x(i+1,:)-x(i,:));
% indx = i+1;
% for j=i:ndata-5
% if (i ~= j) && norm(x(i,:)-x(j,:))<dist
% dist = norm(x(i,:)-x(j,:));
% indx = j; % closest point!
% end
% end
% toc
expn = 0.0; % estimate local rate of expansion (i.e. largest eigenvalue)
for k=1:steps_forward
if norm(x(i+k,:)-x(indx+k,:))>TOL && norm(x(i,:)-x(indx,:))>TOL
expn = expn + (log(norm(x(i+k,:)-x(indx+k,:)))-log(norm(x(i,:)-x(indx,:))))/k;
end
end
exponent(i-N4+1)=expn/steps_forward;
end
toc
sum=0; % now, calculate the overal average over N4 data points ...
for i=1:N4+1
sum = sum+exponent(i);
end
lam=sum/((N4+1)*dt);
% return the average value
% if lam > 0, then system is chaotic