[9f3905]: / echonet / datasets / echo.py

Download this file

283 lines (244 with data), 12.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""EchoNet-Dynamic Dataset."""
import os
import collections
import pandas
import numpy as np
import skimage.draw
import torchvision
import echonet
class Echo(torchvision.datasets.VisionDataset):
"""EchoNet-Dynamic Dataset.
Args:
root (string): Root directory of dataset (defaults to `echonet.config.DATA_DIR`)
split (string): One of {``train'', ``val'', ``test'', ``all'', or ``external_test''}
target_type (string or list, optional): Type of target to use,
``Filename'', ``EF'', ``EDV'', ``ESV'', ``LargeIndex'',
``SmallIndex'', ``LargeFrame'', ``SmallFrame'', ``LargeTrace'',
or ``SmallTrace''
Can also be a list to output a tuple with all specified target types.
The targets represent:
``Filename'' (string): filename of video
``EF'' (float): ejection fraction
``EDV'' (float): end-diastolic volume
``ESV'' (float): end-systolic volume
``LargeIndex'' (int): index of large (diastolic) frame in video
``SmallIndex'' (int): index of small (systolic) frame in video
``LargeFrame'' (np.array shape=(3, height, width)): normalized large (diastolic) frame
``SmallFrame'' (np.array shape=(3, height, width)): normalized small (systolic) frame
``LargeTrace'' (np.array shape=(height, width)): left ventricle large (diastolic) segmentation
value of 0 indicates pixel is outside left ventricle
1 indicates pixel is inside left ventricle
``SmallTrace'' (np.array shape=(height, width)): left ventricle small (systolic) segmentation
value of 0 indicates pixel is outside left ventricle
1 indicates pixel is inside left ventricle
Defaults to ``EF''.
mean (int, float, or np.array shape=(3,), optional): means for all (if scalar) or each (if np.array) channel.
Used for normalizing the video. Defaults to 0 (video is not shifted).
std (int, float, or np.array shape=(3,), optional): standard deviation for all (if scalar) or each (if np.array) channel.
Used for normalizing the video. Defaults to 0 (video is not scaled).
length (int or None, optional): Number of frames to clip from video. If ``None'', longest possible clip is returned.
Defaults to 16.
period (int, optional): Sampling period for taking a clip from the video (i.e. every ``period''-th frame is taken)
Defaults to 2.
max_length (int or None, optional): Maximum number of frames to clip from video (main use is for shortening excessively
long videos when ``length'' is set to None). If ``None'', shortening is not applied to any video.
Defaults to 250.
clips (int, optional): Number of clips to sample. Main use is for test-time augmentation with random clips.
Defaults to 1.
pad (int or None, optional): Number of pixels to pad all frames on each side (used as augmentation).
and a window of the original size is taken. If ``None'', no padding occurs.
Defaults to ``None''.
noise (float or None, optional): Fraction of pixels to black out as simulated noise. If ``None'', no simulated noise is added.
Defaults to ``None''.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
external_test_location (string): Path to videos to use for external testing.
"""
def __init__(self, root=None,
split="train", target_type="EF",
mean=0., std=1.,
length=16, period=2,
max_length=250,
clips=1,
pad=None,
noise=None,
target_transform=None,
external_test_location=None):
if root is None:
root = echonet.config.DATA_DIR
super().__init__(root, target_transform=target_transform)
self.split = split.upper()
if not isinstance(target_type, list):
target_type = [target_type]
self.target_type = target_type
self.mean = mean
self.std = std
self.length = length
self.max_length = max_length
self.period = period
self.clips = clips
self.pad = pad
self.noise = noise
self.target_transform = target_transform
self.external_test_location = external_test_location
self.fnames, self.outcome = [], []
if self.split == "EXTERNAL_TEST":
self.fnames = sorted(os.listdir(self.external_test_location))
else:
# Load video-level labels
with open(os.path.join(self.root, "FileList.csv")) as f:
data = pandas.read_csv(f)
data["Split"].map(lambda x: x.upper())
if self.split != "ALL":
data = data[data["Split"] == self.split]
self.header = data.columns.tolist()
self.fnames = data["FileName"].tolist()
self.fnames = [fn + ".avi" for fn in self.fnames if os.path.splitext(fn)[1] == ""] # Assume avi if no suffix
self.outcome = data.values.tolist()
# Check that files are present
missing = set(self.fnames) - set(os.listdir(os.path.join(self.root, "Videos")))
if len(missing) != 0:
print("{} videos could not be found in {}:".format(len(missing), os.path.join(self.root, "Videos")))
for f in sorted(missing):
print("\t", f)
raise FileNotFoundError(os.path.join(self.root, "Videos", sorted(missing)[0]))
# Load traces
self.frames = collections.defaultdict(list)
self.trace = collections.defaultdict(_defaultdict_of_lists)
with open(os.path.join(self.root, "VolumeTracings.csv")) as f:
header = f.readline().strip().split(",")
assert header == ["FileName", "X1", "Y1", "X2", "Y2", "Frame"]
for line in f:
filename, x1, y1, x2, y2, frame = line.strip().split(',')
x1 = float(x1)
y1 = float(y1)
x2 = float(x2)
y2 = float(y2)
frame = int(frame)
if frame not in self.trace[filename]:
self.frames[filename].append(frame)
self.trace[filename][frame].append((x1, y1, x2, y2))
for filename in self.frames:
for frame in self.frames[filename]:
self.trace[filename][frame] = np.array(self.trace[filename][frame])
# A small number of videos are missing traces; remove these videos
keep = [len(self.frames[f]) >= 2 for f in self.fnames]
self.fnames = [f for (f, k) in zip(self.fnames, keep) if k]
self.outcome = [f for (f, k) in zip(self.outcome, keep) if k]
def __getitem__(self, index):
# Find filename of video
if self.split == "EXTERNAL_TEST":
video = os.path.join(self.external_test_location, self.fnames[index])
elif self.split == "CLINICAL_TEST":
video = os.path.join(self.root, "ProcessedStrainStudyA4c", self.fnames[index])
else:
video = os.path.join(self.root, "Videos", self.fnames[index])
# Load video into np.array
video = echonet.utils.loadvideo(video).astype(np.float32)
# Add simulated noise (black out random pixels)
# 0 represents black at this point (video has not been normalized yet)
if self.noise is not None:
n = video.shape[1] * video.shape[2] * video.shape[3]
ind = np.random.choice(n, round(self.noise * n), replace=False)
f = ind % video.shape[1]
ind //= video.shape[1]
i = ind % video.shape[2]
ind //= video.shape[2]
j = ind
video[:, f, i, j] = 0
# Apply normalization
if isinstance(self.mean, (float, int)):
video -= self.mean
else:
video -= self.mean.reshape(3, 1, 1, 1)
if isinstance(self.std, (float, int)):
video /= self.std
else:
video /= self.std.reshape(3, 1, 1, 1)
# Set number of frames
c, f, h, w = video.shape
if self.length is None:
# Take as many frames as possible
length = f // self.period
else:
# Take specified number of frames
length = self.length
if self.max_length is not None:
# Shorten videos to max_length
length = min(length, self.max_length)
if f < length * self.period:
# Pad video with frames filled with zeros if too short
# 0 represents the mean color (dark grey), since this is after normalization
video = np.concatenate((video, np.zeros((c, length * self.period - f, h, w), video.dtype)), axis=1)
c, f, h, w = video.shape # pylint: disable=E0633
if self.clips == "all":
# Take all possible clips of desired length
start = np.arange(f - (length - 1) * self.period)
else:
# Take random clips from video
start = np.random.choice(f - (length - 1) * self.period, self.clips)
# Gather targets
target = []
for t in self.target_type:
key = self.fnames[index]
if t == "Filename":
target.append(self.fnames[index])
elif t == "LargeIndex":
# Traces are sorted by cross-sectional area
# Largest (diastolic) frame is last
target.append(np.int(self.frames[key][-1]))
elif t == "SmallIndex":
# Largest (diastolic) frame is first
target.append(np.int(self.frames[key][0]))
elif t == "LargeFrame":
target.append(video[:, self.frames[key][-1], :, :])
elif t == "SmallFrame":
target.append(video[:, self.frames[key][0], :, :])
elif t in ["LargeTrace", "SmallTrace"]:
if t == "LargeTrace":
t = self.trace[key][self.frames[key][-1]]
else:
t = self.trace[key][self.frames[key][0]]
x1, y1, x2, y2 = t[:, 0], t[:, 1], t[:, 2], t[:, 3]
x = np.concatenate((x1[1:], np.flip(x2[1:])))
y = np.concatenate((y1[1:], np.flip(y2[1:])))
r, c = skimage.draw.polygon(np.rint(y).astype(np.int), np.rint(x).astype(np.int), (video.shape[2], video.shape[3]))
mask = np.zeros((video.shape[2], video.shape[3]), np.float32)
mask[r, c] = 1
target.append(mask)
else:
if self.split == "CLINICAL_TEST" or self.split == "EXTERNAL_TEST":
target.append(np.float32(0))
else:
target.append(np.float32(self.outcome[index][self.header.index(t)]))
if target != []:
target = tuple(target) if len(target) > 1 else target[0]
if self.target_transform is not None:
target = self.target_transform(target)
# Select clips from video
video = tuple(video[:, s + self.period * np.arange(length), :, :] for s in start)
if self.clips == 1:
video = video[0]
else:
video = np.stack(video)
if self.pad is not None:
# Add padding of zeros (mean color of videos)
# Crop of original size is taken out
# (Used as augmentation)
c, l, h, w = video.shape
temp = np.zeros((c, l, h + 2 * self.pad, w + 2 * self.pad), dtype=video.dtype)
temp[:, :, self.pad:-self.pad, self.pad:-self.pad] = video # pylint: disable=E1130
i, j = np.random.randint(0, 2 * self.pad, 2)
video = temp[:, :, i:(i + h), j:(j + w)]
return video, target
def __len__(self):
return len(self.fnames)
def extra_repr(self) -> str:
"""Additional information to add at end of __repr__."""
lines = ["Target type: {target_type}", "Split: {split}"]
return '\n'.join(lines).format(**self.__dict__)
def _defaultdict_of_lists():
"""Returns a defaultdict of lists.
This is used to avoid issues with Windows (if this function is anonymous,
the Echo dataset cannot be used in a dataloader).
"""
return collections.defaultdict(list)