Diff of /echonet/datasets/echo.py [000000] .. [aeb6cc]

Switch to side-by-side view

--- a
+++ b/echonet/datasets/echo.py
@@ -0,0 +1,282 @@
+"""EchoNet-Dynamic Dataset."""
+
+import os
+import collections
+import pandas
+
+import numpy as np
+import skimage.draw
+import torchvision
+import echonet
+
+
+class Echo(torchvision.datasets.VisionDataset):
+    """EchoNet-Dynamic Dataset.
+
+    Args:
+        root (string): Root directory of dataset (defaults to `echonet.config.DATA_DIR`)
+        split (string): One of {``train'', ``val'', ``test'', ``all'', or ``external_test''}
+        target_type (string or list, optional): Type of target to use,
+            ``Filename'', ``EF'', ``EDV'', ``ESV'', ``LargeIndex'',
+            ``SmallIndex'', ``LargeFrame'', ``SmallFrame'', ``LargeTrace'',
+            or ``SmallTrace''
+            Can also be a list to output a tuple with all specified target types.
+            The targets represent:
+                ``Filename'' (string): filename of video
+                ``EF'' (float): ejection fraction
+                ``EDV'' (float): end-diastolic volume
+                ``ESV'' (float): end-systolic volume
+                ``LargeIndex'' (int): index of large (diastolic) frame in video
+                ``SmallIndex'' (int): index of small (systolic) frame in video
+                ``LargeFrame'' (np.array shape=(3, height, width)): normalized large (diastolic) frame
+                ``SmallFrame'' (np.array shape=(3, height, width)): normalized small (systolic) frame
+                ``LargeTrace'' (np.array shape=(height, width)): left ventricle large (diastolic) segmentation
+                    value of 0 indicates pixel is outside left ventricle
+                             1 indicates pixel is inside left ventricle
+                ``SmallTrace'' (np.array shape=(height, width)): left ventricle small (systolic) segmentation
+                    value of 0 indicates pixel is outside left ventricle
+                             1 indicates pixel is inside left ventricle
+            Defaults to ``EF''.
+        mean (int, float, or np.array shape=(3,), optional): means for all (if scalar) or each (if np.array) channel.
+            Used for normalizing the video. Defaults to 0 (video is not shifted).
+        std (int, float, or np.array shape=(3,), optional): standard deviation for all (if scalar) or each (if np.array) channel.
+            Used for normalizing the video. Defaults to 0 (video is not scaled).
+        length (int or None, optional): Number of frames to clip from video. If ``None'', longest possible clip is returned.
+            Defaults to 16.
+        period (int, optional): Sampling period for taking a clip from the video (i.e. every ``period''-th frame is taken)
+            Defaults to 2.
+        max_length (int or None, optional): Maximum number of frames to clip from video (main use is for shortening excessively
+            long videos when ``length'' is set to None). If ``None'', shortening is not applied to any video.
+            Defaults to 250.
+        clips (int, optional): Number of clips to sample. Main use is for test-time augmentation with random clips.
+            Defaults to 1.
+        pad (int or None, optional): Number of pixels to pad all frames on each side (used as augmentation).
+            and a window of the original size is taken. If ``None'', no padding occurs.
+            Defaults to ``None''.
+        noise (float or None, optional): Fraction of pixels to black out as simulated noise. If ``None'', no simulated noise is added.
+            Defaults to ``None''.
+        target_transform (callable, optional): A function/transform that takes in the target and transforms it.
+        external_test_location (string): Path to videos to use for external testing.
+    """
+
+    def __init__(self, root=None,
+                 split="train", target_type="EF",
+                 mean=0., std=1.,
+                 length=16, period=2,
+                 max_length=250,
+                 clips=1,
+                 pad=None,
+                 noise=None,
+                 target_transform=None,
+                 external_test_location=None):
+        if root is None:
+            root = echonet.config.DATA_DIR
+
+        super().__init__(root, target_transform=target_transform)
+
+        self.split = split.upper()
+        if not isinstance(target_type, list):
+            target_type = [target_type]
+        self.target_type = target_type
+        self.mean = mean
+        self.std = std
+        self.length = length
+        self.max_length = max_length
+        self.period = period
+        self.clips = clips
+        self.pad = pad
+        self.noise = noise
+        self.target_transform = target_transform
+        self.external_test_location = external_test_location
+
+        self.fnames, self.outcome = [], []
+
+        if self.split == "EXTERNAL_TEST":
+            self.fnames = sorted(os.listdir(self.external_test_location))
+        else:
+            # Load video-level labels
+            with open(os.path.join(self.root, "FileList.csv")) as f:
+                data = pandas.read_csv(f)
+            data["Split"].map(lambda x: x.upper())
+
+            if self.split != "ALL":
+                data = data[data["Split"] == self.split]
+
+            self.header = data.columns.tolist()
+            self.fnames = data["FileName"].tolist()
+            self.fnames = [fn + ".avi" for fn in self.fnames if os.path.splitext(fn)[1] == ""]  # Assume avi if no suffix
+            self.outcome = data.values.tolist()
+
+            # Check that files are present
+            missing = set(self.fnames) - set(os.listdir(os.path.join(self.root, "Videos")))
+            if len(missing) != 0:
+                print("{} videos could not be found in {}:".format(len(missing), os.path.join(self.root, "Videos")))
+                for f in sorted(missing):
+                    print("\t", f)
+                raise FileNotFoundError(os.path.join(self.root, "Videos", sorted(missing)[0]))
+
+            # Load traces
+            self.frames = collections.defaultdict(list)
+            self.trace = collections.defaultdict(_defaultdict_of_lists)
+
+            with open(os.path.join(self.root, "VolumeTracings.csv")) as f:
+                header = f.readline().strip().split(",")
+                assert header == ["FileName", "X1", "Y1", "X2", "Y2", "Frame"]
+
+                for line in f:
+                    filename, x1, y1, x2, y2, frame = line.strip().split(',')
+                    x1 = float(x1)
+                    y1 = float(y1)
+                    x2 = float(x2)
+                    y2 = float(y2)
+                    frame = int(frame)
+                    if frame not in self.trace[filename]:
+                        self.frames[filename].append(frame)
+                    self.trace[filename][frame].append((x1, y1, x2, y2))
+            for filename in self.frames:
+                for frame in self.frames[filename]:
+                    self.trace[filename][frame] = np.array(self.trace[filename][frame])
+
+            # A small number of videos are missing traces; remove these videos
+            keep = [len(self.frames[f]) >= 2 for f in self.fnames]
+            self.fnames = [f for (f, k) in zip(self.fnames, keep) if k]
+            self.outcome = [f for (f, k) in zip(self.outcome, keep) if k]
+
+    def __getitem__(self, index):
+        # Find filename of video
+        if self.split == "EXTERNAL_TEST":
+            video = os.path.join(self.external_test_location, self.fnames[index])
+        elif self.split == "CLINICAL_TEST":
+            video = os.path.join(self.root, "ProcessedStrainStudyA4c", self.fnames[index])
+        else:
+            video = os.path.join(self.root, "Videos", self.fnames[index])
+
+        # Load video into np.array
+        video = echonet.utils.loadvideo(video).astype(np.float32)
+
+        # Add simulated noise (black out random pixels)
+        # 0 represents black at this point (video has not been normalized yet)
+        if self.noise is not None:
+            n = video.shape[1] * video.shape[2] * video.shape[3]
+            ind = np.random.choice(n, round(self.noise * n), replace=False)
+            f = ind % video.shape[1]
+            ind //= video.shape[1]
+            i = ind % video.shape[2]
+            ind //= video.shape[2]
+            j = ind
+            video[:, f, i, j] = 0
+
+        # Apply normalization
+        if isinstance(self.mean, (float, int)):
+            video -= self.mean
+        else:
+            video -= self.mean.reshape(3, 1, 1, 1)
+
+        if isinstance(self.std, (float, int)):
+            video /= self.std
+        else:
+            video /= self.std.reshape(3, 1, 1, 1)
+
+        # Set number of frames
+        c, f, h, w = video.shape
+        if self.length is None:
+            # Take as many frames as possible
+            length = f // self.period
+        else:
+            # Take specified number of frames
+            length = self.length
+
+        if self.max_length is not None:
+            # Shorten videos to max_length
+            length = min(length, self.max_length)
+
+        if f < length * self.period:
+            # Pad video with frames filled with zeros if too short
+            # 0 represents the mean color (dark grey), since this is after normalization
+            video = np.concatenate((video, np.zeros((c, length * self.period - f, h, w), video.dtype)), axis=1)
+            c, f, h, w = video.shape  # pylint: disable=E0633
+
+        if self.clips == "all":
+            # Take all possible clips of desired length
+            start = np.arange(f - (length - 1) * self.period)
+        else:
+            # Take random clips from video
+            start = np.random.choice(f - (length - 1) * self.period, self.clips)
+
+        # Gather targets
+        target = []
+        for t in self.target_type:
+            key = self.fnames[index]
+            if t == "Filename":
+                target.append(self.fnames[index])
+            elif t == "LargeIndex":
+                # Traces are sorted by cross-sectional area
+                # Largest (diastolic) frame is last
+                target.append(np.int(self.frames[key][-1]))
+            elif t == "SmallIndex":
+                # Largest (diastolic) frame is first
+                target.append(np.int(self.frames[key][0]))
+            elif t == "LargeFrame":
+                target.append(video[:, self.frames[key][-1], :, :])
+            elif t == "SmallFrame":
+                target.append(video[:, self.frames[key][0], :, :])
+            elif t in ["LargeTrace", "SmallTrace"]:
+                if t == "LargeTrace":
+                    t = self.trace[key][self.frames[key][-1]]
+                else:
+                    t = self.trace[key][self.frames[key][0]]
+                x1, y1, x2, y2 = t[:, 0], t[:, 1], t[:, 2], t[:, 3]
+                x = np.concatenate((x1[1:], np.flip(x2[1:])))
+                y = np.concatenate((y1[1:], np.flip(y2[1:])))
+
+                r, c = skimage.draw.polygon(np.rint(y).astype(np.int), np.rint(x).astype(np.int), (video.shape[2], video.shape[3]))
+                mask = np.zeros((video.shape[2], video.shape[3]), np.float32)
+                mask[r, c] = 1
+                target.append(mask)
+            else:
+                if self.split == "CLINICAL_TEST" or self.split == "EXTERNAL_TEST":
+                    target.append(np.float32(0))
+                else:
+                    target.append(np.float32(self.outcome[index][self.header.index(t)]))
+
+        if target != []:
+            target = tuple(target) if len(target) > 1 else target[0]
+            if self.target_transform is not None:
+                target = self.target_transform(target)
+
+        # Select clips from video
+        video = tuple(video[:, s + self.period * np.arange(length), :, :] for s in start)
+        if self.clips == 1:
+            video = video[0]
+        else:
+            video = np.stack(video)
+
+        if self.pad is not None:
+            # Add padding of zeros (mean color of videos)
+            # Crop of original size is taken out
+            # (Used as augmentation)
+            c, l, h, w = video.shape
+            temp = np.zeros((c, l, h + 2 * self.pad, w + 2 * self.pad), dtype=video.dtype)
+            temp[:, :, self.pad:-self.pad, self.pad:-self.pad] = video  # pylint: disable=E1130
+            i, j = np.random.randint(0, 2 * self.pad, 2)
+            video = temp[:, :, i:(i + h), j:(j + w)]
+
+        return video, target
+
+    def __len__(self):
+        return len(self.fnames)
+
+    def extra_repr(self) -> str:
+        """Additional information to add at end of __repr__."""
+        lines = ["Target type: {target_type}", "Split: {split}"]
+        return '\n'.join(lines).format(**self.__dict__)
+
+
+def _defaultdict_of_lists():
+    """Returns a defaultdict of lists.
+
+    This is used to avoid issues with Windows (if this function is anonymous,
+    the Echo dataset cannot be used in a dataloader).
+    """
+
+    return collections.defaultdict(list)