|
a |
|
b/1 - Methods with Improved Results/SegmentationFunctions.py |
|
|
1 |
import os |
|
|
2 |
import cv2 |
|
|
3 |
import math |
|
|
4 |
|
|
|
5 |
import numpy as np |
|
|
6 |
import pandas as pd |
|
|
7 |
import matplotlib.pyplot as plt |
|
|
8 |
from matplotlib.patches import Rectangle |
|
|
9 |
|
|
|
10 |
from sklearn.cluster import KMeans |
|
|
11 |
from skimage.morphology import erosion, opening, closing, square, \ |
|
|
12 |
disk, convex_hull_image, remove_small_holes |
|
|
13 |
from skimage.measure import label, regionprops |
|
|
14 |
|
|
|
15 |
from skimage.filters import sobel |
|
|
16 |
from skimage.feature import canny |
|
|
17 |
from scipy import ndimage as ndi |
|
|
18 |
from skimage.segmentation import watershed |
|
|
19 |
|
|
|
20 |
SMALL_FONT = 13 |
|
|
21 |
MEDIUM_FONT = 15 |
|
|
22 |
LARGE_FONT = 18 |
|
|
23 |
|
|
|
24 |
plt.rc('font', size=SMALL_FONT) # controls default text sizes |
|
|
25 |
plt.rc('axes', titlesize=SMALL_FONT) # fontsize of the axes title |
|
|
26 |
plt.rc('axes', labelsize=MEDIUM_FONT) # fontsize of the x and y labels |
|
|
27 |
plt.rc('xtick', labelsize=SMALL_FONT) # fontsize of the tick labels |
|
|
28 |
plt.rc('ytick', labelsize=SMALL_FONT) # fontsize of the tick labels |
|
|
29 |
plt.rc('legend', fontsize=MEDIUM_FONT) # legend fontsize |
|
|
30 |
plt.rc('figure', titlesize=LARGE_FONT) # fontsize of the figure title |
|
|
31 |
|
|
|
32 |
plt.rcParams["figure.figsize"] = (10, 5) |
|
|
33 |
|
|
|
34 |
def readSortedSlices(path): |
|
|
35 |
|
|
|
36 |
slices = [] |
|
|
37 |
for s in os.listdir(path): |
|
|
38 |
slices.append(path + '/' + s) |
|
|
39 |
slices.sort(key = lambda s: int(s[s.find('_') + 1 : s.find('.')])) |
|
|
40 |
ID = slices[0][slices[0].find('/') + 1 : slices[0].find('_')] |
|
|
41 |
print('CT scan of Patient %s consists of %d slices.' % (ID, len(slices))) |
|
|
42 |
return (slices, ID) |
|
|
43 |
|
|
|
44 |
def getSliceImages(slices): |
|
|
45 |
|
|
|
46 |
return list(map(readImg, slices)) |
|
|
47 |
|
|
|
48 |
def readImg(path, showOutput=0): |
|
|
49 |
|
|
|
50 |
img = cv2.imread(path) |
|
|
51 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|
|
52 |
|
|
|
53 |
if showOutput: |
|
|
54 |
plt.title('A CT Scan Image Slice') |
|
|
55 |
plt.imshow(img, cmap='gray') |
|
|
56 |
return img |
|
|
57 |
|
|
|
58 |
def imgKMeans(img, K, showOutput=0, showHistogram=0): |
|
|
59 |
''' |
|
|
60 |
Apply KMeans on an image with the number of clusters K |
|
|
61 |
Input: Image, Number of clusters K |
|
|
62 |
Output: Dictionary of cluster center labels and points, Output segmented image |
|
|
63 |
''' |
|
|
64 |
|
|
|
65 |
imgflat = np.reshape(img, img.shape[0] * img.shape[1]).reshape(-1, 1) |
|
|
66 |
|
|
|
67 |
kmeans = KMeans(n_clusters=K, verbose=0) |
|
|
68 |
|
|
|
69 |
kmmodel = kmeans.fit(imgflat) |
|
|
70 |
|
|
|
71 |
labels = kmmodel.labels_ |
|
|
72 |
centers = kmmodel.cluster_centers_ |
|
|
73 |
center_labels = dict(zip(np.arange(K), centers)) |
|
|
74 |
|
|
|
75 |
output = np.array([center_labels[label] for label in labels]) |
|
|
76 |
output = output.reshape(img.shape[0], img.shape[1]).astype(int) |
|
|
77 |
|
|
|
78 |
if showOutput: |
|
|
79 |
|
|
|
80 |
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(10, 5)) |
|
|
81 |
axes = axes.ravel() |
|
|
82 |
|
|
|
83 |
axes[0].imshow(img, cmap='gray') |
|
|
84 |
axes[0].set_title('Original Image') |
|
|
85 |
|
|
|
86 |
axes[1].imshow(output) |
|
|
87 |
axes[1].set_title('Image after KMeans (K = ' + str(K) + ')') |
|
|
88 |
|
|
|
89 |
return center_labels, output |
|
|
90 |
|
|
|
91 |
def preprocessImage(img, showOutput=0): |
|
|
92 |
''' |
|
|
93 |
Preprocess the image by applying truncated thresholding using KMeans |
|
|
94 |
Input: Image |
|
|
95 |
Output: Preprocessed image |
|
|
96 |
''' |
|
|
97 |
centroids, segmented_img = imgKMeans(img, 3, showOutput=0) |
|
|
98 |
|
|
|
99 |
sorted_center_values = sorted([i[0] for i in centroids.values()]) |
|
|
100 |
threshold = (sorted_center_values[-1] + sorted_center_values[-2]) / 2 |
|
|
101 |
|
|
|
102 |
retval, procImg = cv2.threshold(img, threshold, 255, cv2.THRESH_TOZERO) |
|
|
103 |
|
|
|
104 |
if showOutput: |
|
|
105 |
|
|
|
106 |
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(10, 5)) |
|
|
107 |
axes = axes.ravel() |
|
|
108 |
|
|
|
109 |
axes[0].imshow(img, cmap='gray') |
|
|
110 |
axes[0].set_title('Original Image') |
|
|
111 |
|
|
|
112 |
axes[1].imshow(procImg, cmap='gray') |
|
|
113 |
axes[1].set_title('Processed Image - After Thresholding') |
|
|
114 |
|
|
|
115 |
return procImg, threshold |
|
|
116 |
|
|
|
117 |
|
|
|
118 |
def getForegroundMask(img, fg_threshold, showOutput=0): |
|
|
119 |
|
|
|
120 |
retval, init_fg_mask = cv2.threshold(img, fg_threshold, 255, cv2.THRESH_BINARY) |
|
|
121 |
|
|
|
122 |
# Morphological operations to clean the mask |
|
|
123 |
fg_mask_opened = opening(init_fg_mask, square(3)) |
|
|
124 |
fg_mask_opened2 = opening(fg_mask_opened, disk(4)) |
|
|
125 |
|
|
|
126 |
# Perform edge-based segmentation of the foreground... |
|
|
127 |
|
|
|
128 |
# Detect contours that delineate the foreground with the Canny edge detector |
|
|
129 |
edges = canny(fg_mask_opened2) # Background is uniform - edges are on the boundary/inside ROI |
|
|
130 |
|
|
|
131 |
# Fill the inner part of the boundary using morphology ops |
|
|
132 |
fg_mask = ndi.binary_fill_holes(fg_mask_opened2) |
|
|
133 |
|
|
|
134 |
# Plot all steps |
|
|
135 |
if showOutput: |
|
|
136 |
fig, axes = plt.subplots(2, 3, sharex=True, sharey=True, figsize=(16, 10)) |
|
|
137 |
axes = axes.ravel() |
|
|
138 |
|
|
|
139 |
axes[0].set_title('Original Image') |
|
|
140 |
axes[0].imshow(img, cmap='gray') |
|
|
141 |
axes[1].set_title('On Performing Thresholding\'s') |
|
|
142 |
axes[1].imshow(init_fg_mask, cmap='gray') |
|
|
143 |
axes[2].set_title('On Opening with Square SE (3)') |
|
|
144 |
axes[2].imshow(fg_mask_opened, cmap='gray') |
|
|
145 |
axes[3].set_title('On Opening with Disk SE (4)') |
|
|
146 |
axes[3].imshow(fg_mask_opened2, cmap='gray') |
|
|
147 |
axes[4].set_title('Outer Boundary Delineation with Canny\'s') |
|
|
148 |
axes[4].imshow(edges, cmap='gray') |
|
|
149 |
axes[5].set_title('Foreground Mask') |
|
|
150 |
axes[5].imshow(fg_mask, cmap='gray') |
|
|
151 |
|
|
|
152 |
return fg_mask |
|
|
153 |
|
|
|
154 |
|
|
|
155 |
def getLungTracheaMasks(img, fg_mask, fg_threshold, showOutput=0): |
|
|
156 |
|
|
|
157 |
# Distinguish black pixels of the background from those of the lungs |
|
|
158 |
enhanced = img.copy() |
|
|
159 |
|
|
|
160 |
for i in range(img.shape[0]): |
|
|
161 |
for j in range(img.shape[1]): |
|
|
162 |
|
|
|
163 |
if fg_mask[i][j] == 0: |
|
|
164 |
enhanced[i][j] = 255 |
|
|
165 |
|
|
|
166 |
# Extract lungs from the foreground mask |
|
|
167 |
retval, initial_lung_mask = cv2.threshold(enhanced, fg_threshold, 255, cv2.THRESH_BINARY_INV) |
|
|
168 |
|
|
|
169 |
# Clean up the lung mask with morphological operations |
|
|
170 |
lung_mask_op = opening(initial_lung_mask, square(2)) |
|
|
171 |
lung_mask_opcl = closing(lung_mask_op, disk(6)) |
|
|
172 |
lung_mask_opclrm = ndi.binary_fill_holes(lung_mask_opcl) |
|
|
173 |
|
|
|
174 |
# Get connected components of the segmented image and label them |
|
|
175 |
label_img = label(lung_mask_opclrm) |
|
|
176 |
lung_regions = regionprops(label_img) |
|
|
177 |
|
|
|
178 |
# Upon experimentation: areas of regions < 1500 are wind pipe structures |
|
|
179 |
trachea_labels = [] |
|
|
180 |
for i in lung_regions: |
|
|
181 |
if i.area < 1500: |
|
|
182 |
trachea_labels.append(i.label) |
|
|
183 |
|
|
|
184 |
# Create trachea mask as a summation of all those regions |
|
|
185 |
trachea_mask = np.zeros(img.shape, dtype=np.uint8) |
|
|
186 |
for row in range(label_img.shape[0]): |
|
|
187 |
for col in range(label_img.shape[1]): |
|
|
188 |
if label_img[row][col] in trachea_labels: |
|
|
189 |
trachea_mask[row][col] = 255 |
|
|
190 |
|
|
|
191 |
# Lung mask is made of all the other regions |
|
|
192 |
lung_mask = lung_mask_opclrm * np.invert(trachea_mask) |
|
|
193 |
|
|
|
194 |
# Lung mask is all black? Convex hull set to 0, since convex hull op on empty img errors out |
|
|
195 |
if sum(sum(lung_mask)) > 0: |
|
|
196 |
ch_lung_mask = convex_hull_image(lung_mask) |
|
|
197 |
else: |
|
|
198 |
ch_lung_mask = lung_mask.copy() |
|
|
199 |
|
|
|
200 |
|
|
|
201 |
initial_int_heart_mask = ch_lung_mask * np.invert(lung_mask) * np.invert(trachea_mask) |
|
|
202 |
|
|
|
203 |
int_heart_mask_op1 = opening(initial_int_heart_mask, square(5)) |
|
|
204 |
int_heart_mask_op2 = opening(int_heart_mask_op1, disk(4)) |
|
|
205 |
|
|
|
206 |
heart_label_img = label(int_heart_mask_op2) |
|
|
207 |
heart_regions = regionprops(heart_label_img) |
|
|
208 |
|
|
|
209 |
areas = {} |
|
|
210 |
for i in heart_regions: |
|
|
211 |
areas[i.label] = i.area |
|
|
212 |
|
|
|
213 |
if areas: |
|
|
214 |
heart_label = max(areas, key=areas.get) |
|
|
215 |
int_heart_mask = np.where(heart_label_img==heart_label, np.uint8(255), np.uint8(0)) |
|
|
216 |
else: |
|
|
217 |
int_heart_mask = np.zeros(img.shape, dtype=np.uint8) |
|
|
218 |
|
|
|
219 |
if showOutput: |
|
|
220 |
|
|
|
221 |
fig, axes = plt.subplots(4, 3, sharex=True, sharey=True, figsize=(20, 20)) |
|
|
222 |
axes = axes.ravel() |
|
|
223 |
|
|
|
224 |
axes[0].set_title('Original Image') |
|
|
225 |
axes[0].imshow(img, cmap='gray') |
|
|
226 |
|
|
|
227 |
axes[1].set_title('Enhanced Image') |
|
|
228 |
axes[1].imshow(enhanced, cmap='gray') |
|
|
229 |
|
|
|
230 |
axes[2].set_title('Initial Lung Mask') |
|
|
231 |
axes[2].imshow(initial_lung_mask, cmap='gray') |
|
|
232 |
|
|
|
233 |
axes[3].set_title('On Opening with Square SE (2)') |
|
|
234 |
axes[3].imshow(lung_mask_op, cmap='gray') |
|
|
235 |
|
|
|
236 |
axes[4].set_title('On Closing with Disk SE (6)') |
|
|
237 |
axes[4].imshow(lung_mask_opcl, cmap='gray') |
|
|
238 |
|
|
|
239 |
axes[5].set_title('On Filling Regions') |
|
|
240 |
axes[5].imshow(lung_mask_opclrm, cmap='gray') |
|
|
241 |
|
|
|
242 |
axes[6].set_title('Trachea Mask/Primary Bronchi') |
|
|
243 |
axes[6].imshow(trachea_mask, cmap='gray') |
|
|
244 |
|
|
|
245 |
axes[7].set_title('Lung Mask') |
|
|
246 |
axes[7].imshow(lung_mask, cmap='gray') |
|
|
247 |
|
|
|
248 |
axes[8].set_title('Convex Hull of Lung Mask') |
|
|
249 |
axes[8].imshow(ch_lung_mask, cmap='gray') |
|
|
250 |
|
|
|
251 |
axes[9].set_title('Initial Intermediate Heart Mask') |
|
|
252 |
axes[9].imshow(initial_int_heart_mask, cmap='gray') |
|
|
253 |
|
|
|
254 |
axes[10].set_title('On Opening with Square SE (3)') |
|
|
255 |
axes[10].imshow(int_heart_mask_op1, cmap='gray') |
|
|
256 |
|
|
|
257 |
axes[11].set_title('Intermediate heart mask') |
|
|
258 |
axes[11].imshow(int_heart_mask, cmap='gray') |
|
|
259 |
|
|
|
260 |
return trachea_mask, lung_mask, ch_lung_mask, int_heart_mask |
|
|
261 |
|
|
|
262 |
|
|
|
263 |
def chullSpineMask(img, int_heart_mask, showOutput=0): |
|
|
264 |
|
|
|
265 |
# If no heart |
|
|
266 |
if not int_heart_mask.any(): |
|
|
267 |
return int_heart_mask, int_heart_mask |
|
|
268 |
|
|
|
269 |
int_heart_pixel = img.copy() |
|
|
270 |
|
|
|
271 |
for i in range(img.shape[0]): |
|
|
272 |
for j in range(img.shape[1]): |
|
|
273 |
if int_heart_mask[i][j] == 0: |
|
|
274 |
int_heart_pixel[i][j] = 0 |
|
|
275 |
|
|
|
276 |
centroids, segmented_heart_img = imgKMeans(int_heart_pixel, 3, showOutput=0) |
|
|
277 |
|
|
|
278 |
spine_threshold = (max(centroids.values()))[0] |
|
|
279 |
|
|
|
280 |
retval, initial_spine_mask = cv2.threshold(int_heart_pixel, spine_threshold, 255, cv2.THRESH_BINARY) |
|
|
281 |
|
|
|
282 |
bone_mask = closing(initial_spine_mask, disk(20)) |
|
|
283 |
|
|
|
284 |
label_spine = label(bone_mask) |
|
|
285 |
spine_regions = regionprops(label_spine) |
|
|
286 |
|
|
|
287 |
# Assumption: The spine's area is greater than that of any calcium deposits |
|
|
288 |
labels = [] |
|
|
289 |
areas = {} |
|
|
290 |
geometric_measures = {} |
|
|
291 |
for i in spine_regions: |
|
|
292 |
labels.append(i.label) |
|
|
293 |
areas[i.label] = i.area |
|
|
294 |
geometric_measures[i.label] = [i.centroid, i.orientation, i.axis_major_length] |
|
|
295 |
|
|
|
296 |
spine_label = max(areas, key=areas.get) |
|
|
297 |
labels.remove(spine_label) |
|
|
298 |
spine_mask = np.where(label_spine==spine_label, np.uint8(255), np.uint8(0)) |
|
|
299 |
|
|
|
300 |
# if labels: |
|
|
301 |
# calcium_deposit_mask = np.where(label_spine==labels[0], np.uint8(255), np.uint8(0)) |
|
|
302 |
# else: |
|
|
303 |
# calcium_deposit_mask = np.zeros(img.shape, dtype=np.uint8) |
|
|
304 |
|
|
|
305 |
label_heart = label(int_heart_mask) |
|
|
306 |
heart_regions = regionprops(label_heart) |
|
|
307 |
heart_region_area = heart_regions[0].area |
|
|
308 |
spine_region_area = areas[spine_label] |
|
|
309 |
|
|
|
310 |
frac_heart = (heart_region_area - spine_region_area)/heart_region_area |
|
|
311 |
|
|
|
312 |
if frac_heart < 0.5: |
|
|
313 |
heart_mask = np.zeros(img.shape, dtype=np.uint8) |
|
|
314 |
make_spine_mask = 0 |
|
|
315 |
else: |
|
|
316 |
make_spine_mask = 1 |
|
|
317 |
|
|
|
318 |
# Center point of the spine - get the centroid |
|
|
319 |
y0, x0 = geometric_measures[spine_label][0] |
|
|
320 |
|
|
|
321 |
orientation = geometric_measures[spine_label][1] |
|
|
322 |
|
|
|
323 |
# Top-most point of the spine |
|
|
324 |
# top_most_coordinate = centroid - (slightly_more_than_half * axis_major_length * sin(angle)) |
|
|
325 |
x2 = x0 - math.sin(orientation) * 0.6 * geometric_measures[spine_label][2] |
|
|
326 |
y2 = y0 - math.cos(orientation) * 0.6 * geometric_measures[spine_label][2] |
|
|
327 |
|
|
|
328 |
chull_spine_mask = spine_mask.copy() |
|
|
329 |
|
|
|
330 |
# Vertical axis |
|
|
331 |
for i in range(math.ceil(y2), img.shape[1]): |
|
|
332 |
|
|
|
333 |
if i > math.ceil(y0): |
|
|
334 |
# Horizontal axis |
|
|
335 |
for j in range(img.shape[0]): |
|
|
336 |
chull_spine_mask[i][j] = 255 |
|
|
337 |
else: |
|
|
338 |
# Horizontal axis |
|
|
339 |
for j in range(math.ceil(x0)): |
|
|
340 |
chull_spine_mask[i][j] = 255 |
|
|
341 |
|
|
|
342 |
|
|
|
343 |
heart_mask = int_heart_mask * np.invert(chull_spine_mask) |
|
|
344 |
|
|
|
345 |
if showOutput: |
|
|
346 |
|
|
|
347 |
fig, axes = plt.subplots(3, 3, sharex=True, sharey=True, figsize=(15, 15)) |
|
|
348 |
axes = axes.ravel() |
|
|
349 |
|
|
|
350 |
axes[0].set_title('Intermediate Heart Mask') |
|
|
351 |
axes[0].imshow(int_heart_mask, cmap='gray') |
|
|
352 |
|
|
|
353 |
axes[1].set_title('Intermediate Heart Segment') |
|
|
354 |
axes[1].imshow(int_heart_pixel, cmap='gray') |
|
|
355 |
|
|
|
356 |
axes[2].set_title('Intermediate Heart Segment on K-Means (K = 3)') |
|
|
357 |
axes[2].imshow(segmented_heart_img) |
|
|
358 |
|
|
|
359 |
axes[3].set_title('Spine Mask') |
|
|
360 |
axes[3].imshow(initial_spine_mask, cmap='gray') |
|
|
361 |
|
|
|
362 |
axes[4].set_title('On Closing with Disk SE (20)') |
|
|
363 |
axes[4].imshow(spine_mask, cmap='gray') |
|
|
364 |
|
|
|
365 |
axes[5].set_title('On Opening with Square SE (4)') |
|
|
366 |
axes[5].imshow(spine_mask, cmap='gray') |
|
|
367 |
|
|
|
368 |
axes[6].set_title('Centroid and uppermost point') |
|
|
369 |
axes[6].imshow(spine_mask, cmap='gray') |
|
|
370 |
|
|
|
371 |
if make_spine_mask: |
|
|
372 |
axes[6].plot((x0, x2), (y0, y2), '-r', linewidth=1.5) |
|
|
373 |
axes[6].plot(x0, y0, '.g', markersize=5) |
|
|
374 |
axes[6].plot(x2, y2, '.b', markersize=5) |
|
|
375 |
|
|
|
376 |
axes[7].set_title('Convex Hull of Spine Mask') |
|
|
377 |
axes[7].imshow(chull_spine_mask, cmap='gray') |
|
|
378 |
else: |
|
|
379 |
axes[7].set_title('Convex Hull of Spine Mask') |
|
|
380 |
axes[7].imshow(chull_spine_mask, cmap='gray') |
|
|
381 |
|
|
|
382 |
axes[8].set_title('Heart Mask') |
|
|
383 |
axes[8].imshow(heart_mask, cmap='gray') |
|
|
384 |
|
|
|
385 |
return spine_mask, heart_mask |
|
|
386 |
|
|
|
387 |
def segmentHeart(img, heart_mask, showOutput=0): |
|
|
388 |
|
|
|
389 |
seg_heart = cv2.bitwise_and(img, img, mask=heart_mask) |
|
|
390 |
|
|
|
391 |
if showOutput: |
|
|
392 |
plt.figure(figsize=(10, 5)) |
|
|
393 |
plt.title('Segmented Heart') |
|
|
394 |
plt.imshow(seg_heart, cmap='gray') |
|
|
395 |
return seg_heart |
|
|
396 |
|
|
|
397 |
def segmentHeartLungsTrachea(img, heart_mask, lung_mask, trachea_mask, showOutput=0): |
|
|
398 |
|
|
|
399 |
seg_heart = cv2.bitwise_and(img, img, mask=heart_mask) |
|
|
400 |
seg_lungs = cv2.bitwise_and(img, img, mask=lung_mask) |
|
|
401 |
seg_trachea = cv2.bitwise_and(img, img, mask=trachea_mask) |
|
|
402 |
|
|
|
403 |
if showOutput: |
|
|
404 |
fig, [ax1, ax2, ax3] = plt.subplots(1, 3, figsize=(12, 6), sharex=True, sharey=False) |
|
|
405 |
|
|
|
406 |
ax1.set_title('Segmented Heart') |
|
|
407 |
ax1.imshow(seg_heart, cmap='gray') |
|
|
408 |
|
|
|
409 |
ax2.set_title('Segmented Lungs') |
|
|
410 |
ax2.imshow(seg_lungs, cmap='gray') |
|
|
411 |
|
|
|
412 |
ax3.set_title('Segmented Trachea') |
|
|
413 |
ax3.imshow(seg_trachea, cmap='gray') |
|
|
414 |
|
|
|
415 |
return seg_heart, seg_lungs, seg_trachea |
|
|
416 |
|
|
|
417 |
|
|
|
418 |
def applyMaskColor(mask, mask_color): |
|
|
419 |
|
|
|
420 |
masked = np.concatenate(([mask[ ... , np.newaxis] * color for color in mask_color]), axis=2) |
|
|
421 |
|
|
|
422 |
# Matplotlib expects color intensities to range from 0 to 1 if a float |
|
|
423 |
maxValue = np.amax(masked) |
|
|
424 |
minValue = np.amin(masked) |
|
|
425 |
|
|
|
426 |
# Therefore, scale the color image accordingly |
|
|
427 |
if maxValue - minValue == 0: |
|
|
428 |
return masked |
|
|
429 |
else: |
|
|
430 |
masked = masked / (maxValue - minValue) |
|
|
431 |
|
|
|
432 |
return masked |
|
|
433 |
|
|
|
434 |
def getColoredMasks(img, heart_mask, lung_mask, trachea_mask, showOutput=0): |
|
|
435 |
heart_mask_color = np.array([256, 0, 0]) |
|
|
436 |
lung_mask_color = np.array([0, 256, 0]) |
|
|
437 |
trachea_mask_color = np.array([0, 0, 256]) |
|
|
438 |
|
|
|
439 |
heart_colored = applyMaskColor(heart_mask, heart_mask_color) |
|
|
440 |
lung_colored = applyMaskColor(lung_mask, lung_mask_color) |
|
|
441 |
trachea_colored = applyMaskColor(trachea_mask, trachea_mask_color) |
|
|
442 |
|
|
|
443 |
colored_masks = heart_colored + lung_colored + trachea_colored |
|
|
444 |
|
|
|
445 |
if showOutput: |
|
|
446 |
fig, axes = plt.subplots(2, 2, figsize=(10, 10)) |
|
|
447 |
ax = axes.ravel() |
|
|
448 |
|
|
|
449 |
ax[0].set_title("Original Image") |
|
|
450 |
ax[0].imshow(img, cmap='gray') |
|
|
451 |
ax[1].set_title("Heart Mask") |
|
|
452 |
ax[1].imshow(heart_colored) |
|
|
453 |
ax[2].set_title("Lung Mask") |
|
|
454 |
ax[2].imshow(lung_colored) |
|
|
455 |
ax[3].set_title("Masks") |
|
|
456 |
ax[3].imshow(colored_masks) |
|
|
457 |
|
|
|
458 |
return heart_colored, lung_colored, trachea_colored, colored_masks |