[405042]: / cardiac_motion / inference.py

Download this file

447 lines (362 with data), 18.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
""" Run inference on full sequence of images """
import os
import argparse
import logging
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import imageio
import nibabel as nib
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from model.networks import BaseNet
from model.dataset_utils import CenterCrop, Normalise, ToTensor
from model.datasets import CardiacMR_2D_Eval_UKBB, CardiacMR_2D_Inference_UKBB
from model.submodules import resample_transform
from utils.metrics import contour_distances_stack, computeJacobianDeterminant2D
from utils import xutils, flow_utils
def plot_results(target, source, warped_source, op_flow, save_path=None, title_font_size=20, show_fig=False):
"""
Plot all motion related results in one figure,
DVF should be normalised to [-1, 1] space
Images should be min-max normalised to [0,1]
"""
# convert flow into HSV flow with white background
hsv_flow = flow_utils.flow_to_hsv(op_flow, max_mag=0.15, white_bg=True)
## set up the figure
fig = plt.figure(figsize=(30, 18))
title_pad = 10
# source
ax = plt.subplot(2, 4, 1)
plt.imshow(source, cmap='gray')
plt.axis('off')
ax.set_title('Source', fontsize=title_font_size, pad=title_pad)
# warped source
ax = plt.subplot(2, 4, 2)
plt.imshow(warped_source, cmap='gray')
plt.axis('off')
ax.set_title('Warped Source', fontsize=title_font_size, pad=title_pad)
# calculate the error before and after reg
error_before = target - source
error_after = target - warped_source
# error before
ax = plt.subplot(2, 4, 3)
plt.imshow(error_before, vmin=-2, vmax=2, cmap='seismic')
plt.axis('off')
ax.set_title('Error before', fontsize=title_font_size, pad=title_pad)
# error after
ax = plt.subplot(2, 4, 4)
plt.imshow(error_after, vmin=-2, vmax=2, cmap='seismic')
plt.axis('off')
ax.set_title('Error after', fontsize=title_font_size, pad=title_pad)
# target image
ax = plt.subplot(2, 4, 5)
plt.imshow(target, cmap='gray')
plt.axis('off')
ax.set_title('Target', fontsize=title_font_size, pad=title_pad)
# hsv flow
ax = plt.subplot(2, 4, 7)
plt.imshow(hsv_flow)
plt.axis('off')
ax.set_title('HSV', fontsize=title_font_size, pad=title_pad)
# quiver, or "Displacement Vector Field" (DVF)
ax = plt.subplot(2, 4, 6)
interval = 3 # interval between points on the grid
background = source
quiver_flow = np.zeros_like(op_flow)
quiver_flow[:, :, 0] = op_flow[:, :, 0] * op_flow.shape[0] / 2
quiver_flow[:, :, 1] = op_flow[:, :, 1] * op_flow.shape[1] / 2
mesh_x, mesh_y = np.meshgrid(range(0, op_flow.shape[1] - 1, interval),
range(0, op_flow.shape[0] - 1, interval))
plt.imshow(background[:, :], cmap='gray')
plt.quiver(mesh_x, mesh_y,
quiver_flow[mesh_y, mesh_x, 1], quiver_flow[mesh_y, mesh_x, 0],
angles='xy', scale_units='xy', scale=1, color='g')
plt.axis('off')
ax.set_title('DVF', fontsize=title_font_size, pad=title_pad)
# det Jac
ax = plt.subplot(2, 4, 8)
jac_det, mean_grad_detJ, negative_detJ = computeJacobianDeterminant2D(op_flow)
spec = [(0, (0.0, 0.0, 0.0)), (0.000000001, (0.0, 0.2, 0.2)),
(0.12499999999, (0.0, 1.0, 1.0)), (0.125, (0.0, 0.0, 1.0)),
(0.25, (1.0, 1.0, 1.0)), (0.375, (1.0, 0.0, 0.0)),
(1, (0.94509803921568625, 0.41176470588235292, 0.07450980392156863))]
cmap = matplotlib.colors.LinearSegmentedColormap.from_list('detjac', spec)
plt.imshow(jac_det, vmin=-1, vmax=7, cmap=cmap)
plt.axis('off')
ax.set_title('Jacobian (Grad: {0:.2f}, Neg: {1:.2f}%)'.format(mean_grad_detJ, negative_detJ * 100),
fontsize=int(title_font_size*0.9), pad=title_pad)
# split and extend this axe for the colorbar
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax1 = divider.append_axes("right", size="5%", pad=0.05)
cb = plt.colorbar(cax=cax1)
cb.ax.tick_params(labelsize=20)
# adjust subplot placements and spacing
plt.subplots_adjust(left=0.0001, right=0.99, top=0.9, bottom=0.1, wspace=0.001, hspace=0.1)
# saving
if save_path is not None:
fig.savefig(save_path, bbox_inches='tight', dpi=100)
if show_fig:
plt.show()
plt.close()
def inference(model, subject_data_dir, eval_data, subject_output_dir, args, params):
"""
Run inference on one subject sequence
Args:
model: (object) instantiated model
subject_data_dir: (string) directory of the subject's data, absolute path
eval_data: (dict) ED and ES images and labels to evaluate metrics
subject_output_dir: (string) save results of the subject to this dir
args
params
"""
# dataloader for one subject that loads volume pairs of two consecutive frames in a sequence
inference_dataset = CardiacMR_2D_Inference_UKBB(subject_data_dir,
seq=params.seq,
transform=transforms.Compose([
CenterCrop(params.crop_size),
Normalise(),
ToTensor()])
)
logging.info("Running inference computation...")
dvf_buffer = []
target_buffer = []
source_buffer = []
warped_source_buffer = []
# loop over time frames
for (target, source) in inference_dataset:
# size (N, 1, H, W) to input model
target = target.unsqueeze(1).to(device=args.device)
source = source.unsqueeze(1).to(device=args.device)
# run inference
dvf = model(target, source)
warped_source = resample_transform(source, dvf)
# move to cpu & add to buffer, N = #slices
dvf_buffer += [dvf.data.cpu().numpy().transpose(0, 2, 3, 1)] # (N, H, W, 2),
target_buffer += [target.data.squeeze(1).cpu().numpy()[:, :, :]] # (N, H, W)
source_buffer += [source.data.squeeze(1).cpu().numpy()[:, :, :]] # (N, H, W)
warped_source_buffer += [warped_source.data.squeeze(1).cpu().numpy()[:, :, :]] # (N, H, W)
logging.info("- Done.")
# stack on time dimension (0) => (T, N, H, W)
dvf_seq = np.stack(dvf_buffer, axis=0) # (T, N, H, W, 2)
target_seq = np.stack(target_buffer, axis=0)
source_seq = np.stack(source_buffer, axis=0)
warped_source_seq = np.stack(warped_source_buffer, axis=0)
""" Save output transformation and images """
# (optional) extract 3 slices
num_slices = dvf_seq.shape[1]
if not args.all_slices:
apical_idx = int(round((num_slices - 1) * 0.75)) # 75% from basal
mid_ven_idx = int(round((num_slices - 1) * 0.5)) # 50% from basal
basal_idx = int(round((num_slices - 1) * 0.25)) # 25% from basal
slices_idx = [apical_idx, mid_ven_idx, basal_idx]
else:
slices_idx = np.arange(0, num_slices)
# save DVF and image sequences (original and warped)
source_save = source_seq.transpose(2, 3, 1, 0)[..., slices_idx, :] # (H, W, _N, T)
warped_source_save = warped_source_seq.transpose(2, 3, 1, 0)[..., slices_idx, :] # (H, W, _N, T)
dvf_save = dvf_seq.transpose(2, 3, 1, 4, 0)[..., slices_idx, :, :] # (H, W, _N, 2, T)
dvf_save[..., 0, :] *= dvf_save.shape[0] / 2
dvf_save[..., 1, :] *= dvf_save.shape[1] / 2 # un-normalise DVF to image pixel space
# (note: identity image2world header matrix)
nib.save(nib.Nifti1Image(source_save, np.eye(4)), f"{subject_output_dir}/{params.seq}.nii.gz")
nib.save(nib.Nifti1Image(warped_source_save, np.eye(4)), f"{subject_output_dir}/warped_{params.seq}.nii.gz")
nib.save(nib.Nifti1Image(dvf_save, np.eye(4)), f"{subject_output_dir}/{params.seq}_dvf.nii.gz")
""""""
"""
Save visual output
"""
if args.visual_output:
logging.info("Saving visual outputs (WARNING: this process is slow...")
# loop over slices
for slice_num in slices_idx:
logging.info("Saving results of slice no. {}".format(slice_num))
# shape (T, H, W) or (T, H, W, 2)
dvf_slice_seq = dvf_seq[:, slice_num, :, :]
target_slice_seq = target_seq[:, slice_num, :, :]
source_slice_seq = source_seq[:, slice_num, :, :]
warped_source_slice_seq = warped_source_seq[:, slice_num, :, :]
# set up saving directory
output_dir_slice = os.path.join(subject_output_dir, 'slice_{}'.format(slice_num))
if not os.path.exists(output_dir_slice):
os.makedirs(output_dir_slice)
# loop over time frame
png_buffer = []
for fr in range(dvf_slice_seq.shape[0]):
print('Frame: {}/{}'.format(fr, dvf_slice_seq.shape[0]))
dvf_fr = dvf_slice_seq[fr, :, :, :]
target_fr = target_slice_seq[fr, :, :]
source_fr = source_slice_seq[fr, :, :]
warped_source_fr = warped_source_slice_seq[fr, :, :]
fig_save_path = os.path.join(output_dir_slice, 'frame_{}.png'.format(fr))
plot_results(target_fr, source_fr, warped_source_fr, dvf_fr, save_path=fig_save_path)
# read back the PNG to save a GIF animation
png_buffer += [imageio.imread(fig_save_path)]
imageio.mimwrite(os.path.join(output_dir_slice, 'results.gif'), png_buffer, fps=params.fps)
""""""
"""
Evaulate motion estimation accuracy metrics for each subject
(NOTE: only works with SAX images)
"""
if args.metrics:
# unpack the ED ES data Tensor inputs, transpose from (1, N, H, W) to (N, 1, H, W)
image_ed_batch = eval_data['image_ed_batch'].permute(1, 0, 2, 3).to(device=args.device)
image_es_batch = eval_data['image_es_batch'].permute(1, 0, 2, 3).to(device=args.device)
label_es_batch = eval_data['label_es_batch'].permute(1, 0, 2, 3).to(device=args.device)
# compute optical flow and warped ed images using the trained model(source, target)
dvf = model(image_ed_batch, image_es_batch)
# warp ED segmentation mask to ES using nearest neighbourhood interpolation
with torch.no_grad():
warped_label_es_batch = resample_transform(label_es_batch.float(), dvf, interp='nearest')
# move data to cpu to calculate metrics (also transpose into H, W, N)
warped_label_es_batch = warped_label_es_batch.squeeze(1).cpu().numpy().transpose(1, 2, 0)
label_es_batch = label_es_batch.squeeze(1).cpu().numpy().transpose(1, 2, 0)
label_ed_batch = eval_data['label_ed_batch'].squeeze(0).numpy().transpose(1, 2, 0)
# calculate contour distance metrics, metrics functions take inputs shaped in (H, W, N)
mcd_lv, hd_lv = contour_distances_stack(warped_label_es_batch, label_ed_batch,
label_class=1,
dx=params.pixel_size)
mcd_myo, hd_myo = contour_distances_stack(warped_label_es_batch, label_ed_batch,
label_class=2,
dx=params.pixel_size)
mcd_rv, hd_rv = contour_distances_stack(warped_label_es_batch, label_ed_batch,
label_class=3,
dx=params.pixel_size)
metrics = dict()
metrics['mcd_lv'] = mcd_lv
metrics['hd_lv'] = hd_lv
metrics['mcd_myo'] = mcd_myo
metrics['hd_myo'] = hd_myo
metrics['mcd_rv'] = mcd_rv
metrics['hd_rv'] = hd_rv
# save the metrics to a JSON file
metrics_save_path = os.path.join(subject_output_dir, 'metrics.json')
xutils.save_dict_to_json(metrics, metrics_save_path)
# save wapred ES segmentations and original (but cropped) ED segmentation into NIFTIs
nim = nib.load(os.path.join(subject_data_dir, 'label_sa_ED.nii.gz'))
nim_wapred_label_es = nib.Nifti1Image(warped_label_es_batch, nim.affine, nim.header)
nib.save(nim_wapred_label_es, os.path.join(subject_output_dir, 'warped_label_ES.nii.gz'))
nim_label_ed = nib.Nifti1Image(label_ed_batch, nim.affine, nim.header)
nib.save(nim_label_ed, os.path.join(subject_output_dir, 'label_ED.nii.gz'))
nim_label_es = nib.Nifti1Image(label_es_batch, nim.affine, nim.header)
nib.save(nim_label_es, os.path.join(subject_output_dir, 'label_ES.nii.gz'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir',
default='data/inference',
help="Path to the dir containing inference data")
parser.add_argument('--model_dir',
default=None,
help="Main directory for the model (with params.json)")
parser.add_argument('--restore_file',
default="best.pth.tar",
help="Name of the file in --model_dir storing model to load before training")
parser.add_argument('--all_slices',
action='store_true',
help="Evaluate metrics on all slices instead of only 3.")
parser.add_argument('--no_cuda',
action='store_true')
parser.add_argument('--gpu',
default=0,
help='Choose GPU')
parser.add_argument('--num_workers',
default=8,
help='Number of dataloader workers, 0 for main process only')
parser.add_argument('--metrics',
action='store_true',
help="Evaluating metrics")
parser.add_argument('--save_nifti',
action='store_true',
help="Save results in NIFTI files")
parser.add_argument('--visual_output',
action='store_true',
help="Save GIF and a sequence of PNGs of DVFs on image frames for each slice.")
args = parser.parse_args()
"""
Setting up
"""
# set device
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
args.device = torch.device('cuda')
else:
args.device = torch.device('cpu')
# set up logger
xutils.set_logger(os.path.join(args.model_dir, 'inference.log'))
logging.info(f"Running inference of model: {args.model_dir}")
# check whether the trained model exists
logging.info(f"Model: {args.model_dir}")
assert os.path.exists(args.model_dir), f"No model dir found at: {args.model_dir}"
# load setting parameters from a JSON file
json_path = os.path.join(args.model_dir, "params.json")
assert os.path.isfile(json_path), f"No json configuration file found at: {json_path}"
params = xutils.Params(json_path)
# set up save dir
output_dir = os.path.join(args.model_dir, 'inference_results')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
""""""
"""
Data
"""
logging.info(f"Inference data path: {args.data_dir}")
# set up the eval dataloader to evaluate metrics
eval_dataset = CardiacMR_2D_Eval_UKBB(args.data_dir,
seq=params.seq,
label_prefix=params.label_prefix,
transform=transforms.Compose([
CenterCrop(params.crop_size),
Normalise(),
ToTensor()]),
label_transform=transforms.Compose([
CenterCrop(params.crop_size),
ToTensor()])
)
eval_dataloader = DataLoader(eval_dataset,
batch_size=params.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=args.cuda)
""""""
"""
Model
"""
# set up model and loss function
model = BaseNet()
model = model.to(device=args.device)
# reload network parameters from saved model file
logging.info(f"Loading model from saved file: "
f"{os.path.join(args.model_dir, args.restore_file)}")
xutils.load_checkpoint(os.path.join(args.model_dir, args.restore_file), model)
model.eval()
""""""
"""
Run inference
"""
# loop over subjects using evaluation dataloader
logging.info("Starting inference...")
with tqdm(total=len(eval_dataloader)) as t:
for idx, (image_ed_batch, image_es_batch, label_ed_batch, label_es_batch) in enumerate(eval_dataloader):
# pack the eval data into a dict
eval_data = dict()
eval_data['image_ed_batch'] = image_ed_batch
eval_data['image_es_batch'] = image_es_batch
eval_data['label_ed_batch'] = label_ed_batch
eval_data['label_es_batch'] = label_es_batch
# get the subject dir from dataset
subject_id = eval_dataloader.dataset.dir_list[idx]
logging.info("Subject: {}".format(subject_id))
subject_data_dir = os.path.join(args.data_dir, subject_id)
assert os.path.exists(subject_data_dir), \
f"Inference data of subject {subject_id} does not exist!"
subject_output_dir = os.path.join(output_dir, subject_id)
if not os.path.exists(subject_output_dir):
os.makedirs(subject_output_dir)
# run inference on the subject
inference(model, subject_data_dir, eval_data, subject_output_dir, args, params)
t.update()
logging.info("Inference complete.")