#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 30 14:28:59 2018
@author: Josefine
"""
## Import libraries
import numpy as np
import tensorflow as tf
import re
import glob
import keras
from time import time
from sklearn.utils import shuffle
import nibabel as nib
from skimage.transform import resize
# Define parameters:
lr = 1e-5 # learning-rate (or starting LR if it is decreasing)
nEpochs = 50 # Number of epochs
batch_size = 1
valid_size = 1
# Other network specific parameters
n_classes = 2
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
imgDim = 128
######################################################################
## ##
## Setting up the network ##
## ##
######################################################################
tf.reset_default_graph()
#Define placeholder for input and output
x = tf.placeholder(tf.float32,[None,imgDim,imgDim,1],name = 'x_train') #input (572+572+1 image)
y = tf.placeholder(tf.float32,[None,imgDim,imgDim,n_classes],name='y_train') #Output (388x388x2 labels)
drop_rate = tf.placeholder(tf.float32, shape=())
######################################################################
## ##
## Metrics and functions ##
## ##
######################################################################
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def dice_coef(y_true, y_pred): #making the loss function smooth
y_true_f = tf.contrib.layers.flatten(tf.argmax(y,axis=-1))
y_pred_f = tf.contrib.layers.flatten(tf.argmax(output,axis=-1))
intersection = tf.reduce_sum(y_true_f * y_pred_f)
return (2 * intersection) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f))
######################################################################
## Layers ##
######################################################################
def conv2d(inputs, filters, kernel, stride, pad, name):
""" Creates a 2D convolution with following specs:
Args:
inputs: (Tensor) Tensor which you want to apply convolution to
filters: (integer) Number of filters in kernel
kernel_size: (integer) Size of kernel
Strides: (integer) Stride
pad: ('VALID' or 'SAME') Type of padding
name: (string) Name of layer
"""
with tf.name_scope(name):
conv = tf.layers.conv2d(inputs, filters, kernel_size = kernel, strides = [stride,stride], padding=pad,activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.xavier_initializer())
return conv
def max_pool(inputs,n,stride,pad):
maxpool = tf.nn.max_pool(inputs, ksize=[1,n,n,1], strides=[1,stride,stride,1], padding=pad)
return maxpool
def crop2d(inputs,dim):
crop = tf.image.resize_image_with_crop_or_pad(inputs,dim,dim)
return crop
def concat(input1,input2,axis):
combined = tf.concat([input1,input2],axis)
return combined
def dropout(input1,drop_rate):
input_shape = input1.get_shape().as_list()
noise_shape = tf.constant(value=[1, 1, 1, input_shape[3]])
drop = tf.nn.dropout(input1, keep_prob=drop_rate, noise_shape=noise_shape)
return drop
def transpose(inputs,filters, kernel, stride, pad, name):
with tf.name_scope(name):
trans = tf.layers.conv2d_transpose(inputs,filters, kernel_size=[kernel,kernel],strides=[stride,stride],padding=pad,kernel_initializer=tf.contrib.layers.xavier_initializer())
return trans
######################################################################
## Data ##
######################################################################
def create_data(filename_img,filename_label,direction):
images = []
for f in range(len(filename_img)):
a = nib.load(filename_img[f])
a = a.get_data()
# Normalize:
a2 = np.clip(a,-1000,1000)
a3 = np.interp(a2, (a2.min(), a2.max()), (-1, +1))
# Reshape:
img = np.zeros([512,512,512])+np.min(a3)
index1 = int(np.ceil((512-a.shape[2])/2))
index2 = int(512-np.floor((512-a.shape[2])/2))
img[:,:,index1:index2] = a3
im = resize(img,(imgDim,imgDim,imgDim),order=0)
if direction == 'sag':
for i in range(im.shape[0]):
images.append((im[i,:,:]))
if direction == 'cor':
for i in range(im.shape[1]):
images.append((im[:,i,:]))
if direction == 'axial':
for i in range(im.shape[2]):
images.append((im[:,:,i]))
images = np.asarray(images)
images = images.reshape(-1, imgDim,imgDim,1)
# Label creation
labels = []
for g in range(len(filename_label)):
b = nib.load(filename_label[g])
b = b.get_data()
img = np.zeros([b.shape[0],b.shape[0],b.shape[0]])
index1 = int(np.ceil((img.shape[2]-b.shape[2])/2))
index2 = int(img.shape[2]-np.floor((img.shape[2]-b.shape[2])/2))
img[:,:,index1:index2] = b
lab = resize(img,(imgDim,imgDim,imgDim),order=0)
lab[lab>1] = 1
if direction == 'sag':
for i in range(lab.shape[0]):
labels.append((lab[i,:,:]))
if direction == 'cor':
for i in range(lab.shape[1]):
labels.append((lab[:,i,:]))
if direction == 'axial':
for i in range(lab.shape[2]):
labels.append((lab[:,:,i]))
labels = np.asarray(labels)
labels_onehot = np.stack((labels==0, labels==1), axis=3).astype('int32')
return images, labels_onehot
###############################################################################
## Setup of network ##
###############################################################################
# -------------------------- Contracting path ---------------------------------
conv1a = conv2d(x,filters=64,kernel=3,stride=1,pad='same',name = 'conv1a')
conv1a.get_shape()
conv1b = conv2d(conv1a,filters=64,kernel=3,stride=1,pad='same',name = 'conv1b')
conv1b.get_shape()
#drop1 = dropout(conv1b, drop_rate)
#drop1.get_shape()
pool1 = max_pool(conv1b,n=2,stride=2,pad='SAME')
pool1.get_shape()
conv2a = conv2d(pool1,filters=128,kernel=3,stride=1,pad='same',name = 'conv2a')
conv2a.get_shape()
conv2b = conv2d(conv2a,filters=128,kernel=3,stride=1,pad='same',name = 'conv2b')
conv2b.get_shape()
drop2 = dropout(conv2b, drop_rate)
drop2.get_shape()
pool2 = max_pool(drop2,n=2,stride=2,pad='SAME')
pool2.get_shape()
conv3a = conv2d(pool2,filters=256,kernel=3,stride=1,pad='same',name = 'conv3a')
conv3a.get_shape()
conv3b = conv2d(conv3a,filters=256,kernel=3,stride=1,pad='same',name = 'conv3b')
conv3b.get_shape()
drop3 = dropout(conv3b, drop_rate)
drop3.get_shape()
pool3 = max_pool(drop3,n=2,stride=2,pad='SAME')
pool3.get_shape()
conv4a = conv2d(pool3,filters=512,kernel=3,stride=1,pad='same',name = 'conv4a')
conv4a.get_shape()
conv4b = conv2d(conv4a,filters=512,kernel=3,stride=1,pad='same',name = 'conv4b')
conv4b.get_shape()
drop4 = dropout(conv4b, drop_rate)
drop4.get_shape()
pool4 = max_pool(drop4,n=2,stride=2,pad='SAME')
pool4.get_shape()
conv5a = conv2d(pool4,filters=1024,kernel=3,stride=1,pad='same',name = 'conv5a')
conv5a.get_shape()
conv5b = conv2d(conv5a,filters=1024,kernel=3,stride=1,pad='same',name = 'conv5b')
conv5b.get_shape()
drop5 = dropout(conv5b, drop_rate)
drop5.get_shape()
# ---------------------------- Expansive path ---------------------------------
up6a = transpose(drop5,filters=512,kernel=2,stride=2,pad='same',name='up6a')
up6a.get_shape()
up6b = concat(up6a,conv4b,axis=3)
up6b.get_shape()
conv7a = conv2d(up6b,filters=512,kernel=3,stride=1,pad='same',name = 'conv7a')
conv7a.get_shape()
conv7b = conv2d(conv7a,filters=512,kernel=3,stride=1,pad='same',name = 'conv7b')
conv7b.get_shape()
drop7 = dropout(conv7b, drop_rate)
drop7.get_shape()
up7a = transpose(drop7,filters=256,kernel=2,stride=2,pad='same',name='up7a')
up7a.get_shape()
up7b = concat(up7a,conv3b,axis=3)
up7b.get_shape()
conv8a = conv2d(up7b,filters=256,kernel=3,stride=1,pad='same',name = 'conv7a')
conv8a.get_shape()
conv8b = conv2d(conv8a,filters=256,kernel=3,stride=1,pad='same',name = 'conv7b')
conv8b.get_shape()
drop8 = dropout(conv8b, drop_rate)
drop8.get_shape()
up8a = transpose(drop8,filters=128,kernel=2,stride=2,pad='same',name='up7a')
up8a.get_shape()
up8b = concat(up8a,conv2b,axis=3)
up8b.get_shape()
conv9a = conv2d(up8b,filters=128,kernel=3,stride=1,pad='same',name = 'conv7a')
conv9a.get_shape()
conv9b = conv2d(conv9a,filters=128,kernel=3,stride=1,pad='same',name = 'conv7b')
conv9b.get_shape()
#drop9 = dropout(conv9b, drop_rate)
#drop9.get_shape()
up9a = transpose(conv9b,filters=64,kernel=2,stride=2,pad='same',name='up7a')
up9a.get_shape()
up9b = concat(up9a,conv1b,axis=3)
up9b.get_shape()
conv10a = conv2d(up9b,filters=64,kernel=3,stride=1,pad='same',name = 'conv7a')
conv10a.get_shape()
conv10b = conv2d(conv10a,filters=64,kernel=3,stride=1,pad='same',name = 'conv7b')
conv10b.get_shape()
output = tf.layers.conv2d(conv10b, 2, 1, (1,1),padding ='same',activation=tf.nn.softmax, kernel_initializer=tf.contrib.layers.xavier_initializer(), name = 'output')
output.get_shape()
######################################################################
## ##
## Loading data ##
## ##
######################################################################
filelist_train = natural_sort(glob.glob('WHS/Augment_data/*_image.nii')) # list of file names
filelist_train_label = natural_sort(glob.glob('WHS/Augment_data/*_label.nii')) # list of file names
x_data, y_data = create_data(filelist_train,filelist_train_label,'cor')
#filelist_val = natural_sort(glob.glob('WHS/validation/*_image.nii.gz')) # list of file names
#filelist_val_label = natural_sort(glob.glob('WHS/validation/*_label.nii.gz')) # list of file names
#x_val, y_val = create_data(filelist_val,filelist_val_label,'cor')
######################################################################
## ##
## Defining the training ##
## ##
######################################################################
# Training-steps (honestly I have no idea what it does...)
global_step = tf.Variable(0,trainable=False)
###############################################################################
## Loss ##
###############################################################################
# Compare the output of the network (output: tensor) with the ground truth (y: tensor/placeholder)
# In this case we use sigmoid cross entropu losss with logits
loss = tf.reduce_mean(keras.losses.binary_crossentropy(y_true = y, y_pred = output))
# accuracy and dice
correct_prediction = tf.equal(tf.argmax(output, axis=-1), tf.argmax(y, axis=-1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
dice = dice_coef(tf.argmax(y,axis=-1), tf.argmax(output,axis=-1))
###############################################################################
## Optimizer ##
###############################################################################
opt = tf.train.AdamOptimizer(lr,beta1,beta2,epsilon)
###############################################################################
## Minimizer ##
###############################################################################
train_adam = opt.minimize(loss, global_step)
###############################################################################
## Initializer ##
###############################################################################
# Initializes all variables in the graph
init = tf.global_variables_initializer()
######################################################################
## ##
## Start training ##
## ##
######################################################################
# Initialize saving of the network parameters:
saver = tf.train.Saver()
######################## Start training Session ###########################
start_time = time()
#valid_loss, valid_accuracy, valid_dice = [], [], []
train_loss, train_accuracy, train_dice = [], [], []
index_train = shuffle(range(x_data.shape[0]))
#valid_size = int(np.floor(len(index1)*0.1))
#index_train = index1[valid_size:]
#index_valid = index1[:valid_size]
with tf.Session() as sess:
t_start = time()
# Initialize
sess.run(init)
# Trainingsloop
for epoch in range(nEpochs):
t_epoch_start = time()
print('========Training Epoch: ', (epoch + 1))
iter_by_epoch = len(index_train)
index_train_shuffle = shuffle(index_train)
for i in range(iter_by_epoch):
t_iter_start = time()
x_batch = np.expand_dims(x_data[index_train_shuffle[i],:,:,:], axis=0)
y_batch = np.expand_dims(y_data[index_train_shuffle[i],:,:,:], axis=0)
_,_loss,_acc,_dice= sess.run([train_adam, loss, accuracy,dice], feed_dict = {x: x_batch, y: y_batch, drop_rate: 0.5})
train_loss.append(_loss)
train_accuracy.append(_acc)
train_dice.append(_dice)
# # Validation-step:
# if i==np.max(range(iter_by_epoch)):
# valid_range = x_val.shape[0]
# for m in range(valid_range):
# x_batch_val = np.expand_dims(x_val[m,:,:,:], axis=0)
# y_batch_val = np.expand_dims(y_val[m,:,:,:], axis=0)
# _loss_valid,_acc_valid,_dice_valid, = sess.run([loss,accuracy,dice], feed_dict= {x: x_batch_val,y: y_batch_val, drop_rate: 1.0})
# valid_loss.append(_loss_valid)
# valid_accuracy.append(_acc_valid)
# valid_dice.append(_dice_valid)
t_epoch_finish = time()
print("Epoch:", (epoch + 1), ' avg_loss= ', "{:.9f}".format(np.mean(train_loss)), 'avg_acc= ', "{:.9f}".format(np.mean(train_accuracy)),'avg_dice= ', "{:.9f}".format(np.mean(train_dice)),' time_epoch=', str(t_epoch_finish-t_epoch_start))
# print("Validation:", (epoch + 1), ' avg_loss= ', "{:.9f}".format(np.mean(valid_loss)), ' avg_acc= ', "{:.9f}".format(np.mean(valid_accuracy)),'avg_dice= ', "{:.9f}".format(np.mean(valid_dice)))
t_end = time()
# Save the model in the end
saver.save(sess,"WHS/Results/region/model_cor/model.ckpt")
np.save('WHS/Results/train_hist/region/train_loss_cor',train_loss)
np.save('WHS/Results/train_hist/region/train_acc_cor',train_accuracy)
# np.save('WHS/Results/train_hist/region/valid_loss_cor',valid_loss)
# np.save('WHS/Results/train_hist/region/valid_acc_cor',valid_accuracy)
print('Training Done! Total time:' + str(t_end - t_start))