|
a |
|
b/Region/visualize_regiontrain.py |
|
|
1 |
#!/usr/bin/env python3 |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
""" |
|
|
4 |
Created on Fri Nov 9 14:43:07 2018 |
|
|
5 |
|
|
|
6 |
@author: Josefine |
|
|
7 |
""" |
|
|
8 |
|
|
|
9 |
import numpy as np |
|
|
10 |
import sys |
|
|
11 |
import os |
|
|
12 |
sys.path.append(os.path.join('.', '..')) |
|
|
13 |
import matplotlib.pyplot as plt |
|
|
14 |
import matplotlib |
|
|
15 |
import matplotlib.pylab as pylab |
|
|
16 |
%matplotlib inline |
|
|
17 |
# |
|
|
18 |
a = np.load('Results/region_performance.npz') |
|
|
19 |
dice2 = a['dice'] |
|
|
20 |
acc = a['acc'] |
|
|
21 |
spec = a['spec'] |
|
|
22 |
sens = a['sens'] |
|
|
23 |
rates = a['rates'] |
|
|
24 |
|
|
|
25 |
#params = {'legend.fontsize': 'x-large', |
|
|
26 |
# 'figure.figsize': (15, 5), |
|
|
27 |
# 'axes.labelsize': 'x-large', |
|
|
28 |
# 'axes.titlesize':'x-large', |
|
|
29 |
# 'xtick.labelsize':'x-large', |
|
|
30 |
# 'ytick.labelsize':'x-large'} |
|
|
31 |
#pylab.rcParams.update(params) |
|
|
32 |
|
|
|
33 |
def epoch_average(a,size): |
|
|
34 |
new_a = [] |
|
|
35 |
i = 0 |
|
|
36 |
while i < len(a): |
|
|
37 |
val = np.mean(a[i:i+size]) |
|
|
38 |
new_a.append(val) |
|
|
39 |
i+=size |
|
|
40 |
return new_a |
|
|
41 |
|
|
|
42 |
dim = 128 |
|
|
43 |
|
|
|
44 |
# Load validation curves |
|
|
45 |
n_test = int(2*dim) |
|
|
46 |
acc_cor = epoch_average(np.load('Results/train_hist/region/valid_acc_cor.npy'),n_test) |
|
|
47 |
loss_cor = epoch_average(np.load('Results/train_hist/region/valid_loss_cor.npy'),n_test) |
|
|
48 |
acc_sag = epoch_average(np.load('Results/train_hist/region/valid_acc_sag.npy'),n_test) |
|
|
49 |
loss_sag = epoch_average(np.load('Results/train_hist/region/valid_loss_sag.npy'),n_test) |
|
|
50 |
acc_axial = epoch_average(np.load('Results/train_hist/region/valid_acc_axial.npy'),n_test) |
|
|
51 |
loss_axial = epoch_average(np.load('Results/train_hist/region/valid_loss_axial.npy'),n_test) |
|
|
52 |
|
|
|
53 |
acc_axial_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/valid_acc_axial.npy'),n_test) |
|
|
54 |
loss_axial_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/valid_loss_axial.npy'),n_test) |
|
|
55 |
acc_sag_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/valid_acc_sag.npy'),n_test) |
|
|
56 |
loss_sag_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/valid_loss_sag.npy'),n_test) |
|
|
57 |
acc_cor_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/valid_acc_cor.npy'),n_test) |
|
|
58 |
loss_cor_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/valid_loss_cor.npy'),n_test) |
|
|
59 |
|
|
|
60 |
acc_cor_noaug = epoch_average(np.load('Results/train_hist/region_noaug/valid_acc_cor.npy'),n_test) |
|
|
61 |
loss_cor_noaug = epoch_average(np.load('Results/train_hist/region_noaug/valid_loss_cor.npy'),n_test) |
|
|
62 |
acc_sag_noaug = epoch_average(np.load('Results/train_hist/region_noaug/valid_acc_sag.npy'),n_test) |
|
|
63 |
loss_sag_noaug = epoch_average(np.load('Results/train_hist/region_noaug/valid_loss_sag.npy'),n_test) |
|
|
64 |
acc_axial_noaug = epoch_average(np.load('Results/train_hist/region_noaug/valid_acc_axial.npy'),n_test) |
|
|
65 |
loss_axial_noaug = epoch_average(np.load('Results/train_hist/region_noaug/valid_loss_axial.npy'),n_test) |
|
|
66 |
|
|
|
67 |
acc_axial_nothing = epoch_average(np.load('Results/train_hist/region_nothing/valid_acc_axial.npy'),n_test) |
|
|
68 |
loss_axial_nothing = epoch_average(np.load('Results/train_hist/region_nothing/valid_loss_axial.npy'),n_test) |
|
|
69 |
acc_sag_nothing = epoch_average(np.load('Results/train_hist/region_nothing/valid_acc_sag.npy'),n_test) |
|
|
70 |
loss_sag_nothing = epoch_average(np.load('Results/train_hist/region_nothing/valid_loss_sag.npy'),n_test) |
|
|
71 |
acc_cor_nothing = epoch_average(np.load('Results/train_hist/region_nothing/valid_acc_cor.npy'),n_test) |
|
|
72 |
loss_cor_nothing = epoch_average(np.load('Results/train_hist/region_nothing/valid_loss_cor.npy'),n_test) |
|
|
73 |
|
|
|
74 |
plt.rcParams.update({'font.size': 13}) |
|
|
75 |
|
|
|
76 |
plt.figure(figsize=(8*4, 8*3)) |
|
|
77 |
plt.subplot(3,4,3) |
|
|
78 |
matplotlib.ticker.MultipleLocator(0.01) |
|
|
79 |
plt.plot(acc_cor, label = 'Both') |
|
|
80 |
plt.plot(acc_cor_noaug, label = 'Only drop out') |
|
|
81 |
plt.plot(acc_cor_nodrop, label = 'Only augmentation') |
|
|
82 |
plt.plot(acc_cor_nothing, label = 'Nothing') |
|
|
83 |
plt.legend(loc='lower right') |
|
|
84 |
plt.xlabel('Epochs') |
|
|
85 |
plt.ylabel('Accuracy') |
|
|
86 |
axes = plt.gca() |
|
|
87 |
axes.set_ylim([0.95,1]) |
|
|
88 |
plt.title('Validation accuracy coronal network') |
|
|
89 |
plt.subplot(3,4,4) |
|
|
90 |
plt.title('Validation loss coronal network') |
|
|
91 |
plt.plot(loss_cor, label = 'Both') |
|
|
92 |
plt.plot(loss_cor_noaug, label = 'Only drop out') |
|
|
93 |
plt.plot(loss_cor_nodrop, label = 'Only augmentation') |
|
|
94 |
plt.plot(loss_cor_nothing, label = 'Nothing') |
|
|
95 |
plt.legend(loc='upper right') |
|
|
96 |
axes = plt.gca() |
|
|
97 |
axes.set_ylim([0.02,0.19]) |
|
|
98 |
plt.xlabel('Epochs') |
|
|
99 |
plt.ylabel('Loss') |
|
|
100 |
|
|
|
101 |
plt.subplot(3,4,7) |
|
|
102 |
plt.plot(acc_sag, label = 'Both') |
|
|
103 |
plt.plot(acc_sag_noaug, label = 'Only drop out') |
|
|
104 |
plt.plot(acc_sag_nodrop, label = 'Only augmentation') |
|
|
105 |
plt.plot(acc_sag_nothing, label = 'Nothing') |
|
|
106 |
axes = plt.gca() |
|
|
107 |
plt.xlabel('Epochs') |
|
|
108 |
plt.ylabel('Accuracy') |
|
|
109 |
axes.set_ylim([0.95,1]) |
|
|
110 |
plt.legend(loc='lower right') |
|
|
111 |
plt.title('Validation accuracy sagittal network') |
|
|
112 |
plt.subplot(3,4,8) |
|
|
113 |
plt.title('Validation loss sigittal network') |
|
|
114 |
plt.plot(loss_sag, label = 'Both') |
|
|
115 |
plt.plot(loss_sag_noaug, label = 'Only drop out') |
|
|
116 |
plt.plot(loss_sag_nodrop, label = 'Only augmentation') |
|
|
117 |
plt.plot(loss_sag_nothing, label = 'Nothing') |
|
|
118 |
plt.legend(loc='upper right') |
|
|
119 |
plt.xlabel('Epochs') |
|
|
120 |
plt.ylabel('Loss') |
|
|
121 |
axes = plt.gca() |
|
|
122 |
axes.set_ylim([0.02,0.19]) |
|
|
123 |
|
|
|
124 |
plt.subplot(3,4,11) |
|
|
125 |
plt.plot(acc_axial, label = 'Both') |
|
|
126 |
plt.plot(acc_axial_noaug, label = 'Only drop out') |
|
|
127 |
plt.plot(acc_axial_nodrop, label = 'Only augmentation') |
|
|
128 |
plt.plot(acc_axial_nothing, label = 'Nothing') |
|
|
129 |
axes = plt.gca() |
|
|
130 |
plt.xlabel('Epochs') |
|
|
131 |
plt.ylabel('Accuracy') |
|
|
132 |
axes.set_ylim([0.95,1]) |
|
|
133 |
plt.title('Validation accuracy axial network') |
|
|
134 |
plt.legend(loc='lower right') |
|
|
135 |
plt.subplot(3,4,12) |
|
|
136 |
plt.plot(loss_axial, label = 'Both') |
|
|
137 |
plt.plot(loss_axial_noaug, label = 'Only drop out') |
|
|
138 |
plt.plot(loss_axial_nodrop, label = 'Only augmentation') |
|
|
139 |
plt.plot(loss_axial_nothing, label = 'Nothing') |
|
|
140 |
plt.title('Validation loss axial network') |
|
|
141 |
plt.xlabel('Epochs') |
|
|
142 |
plt.ylabel('Loss') |
|
|
143 |
plt.legend(loc='upper right') |
|
|
144 |
axes = plt.gca() |
|
|
145 |
axes.set_ylim([0.02,0.19]) |
|
|
146 |
|
|
|
147 |
|
|
|
148 |
#% Load training curves |
|
|
149 |
n_test = int(13*6*dim) |
|
|
150 |
acc_cor = epoch_average(np.load('Results/train_hist/region/train_acc_cor.npy'),n_test) |
|
|
151 |
loss_cor = epoch_average(np.load('Results/train_hist/region/train_loss_cor.npy'),n_test) |
|
|
152 |
acc_sag = epoch_average(np.load('Results/train_hist/region/train_acc_sag.npy'),n_test) |
|
|
153 |
loss_sag = epoch_average(np.load('Results/train_hist/region/train_loss_sag.npy'),n_test) |
|
|
154 |
acc_axial = epoch_average(np.load('Results/train_hist/region/train_acc_axial.npy'),n_test) |
|
|
155 |
loss_axial = epoch_average(np.load('Results/train_hist/region/train_loss_axial.npy'),n_test) |
|
|
156 |
|
|
|
157 |
n_test = int(13*6*dim) |
|
|
158 |
acc_axial_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/train_acc_axial.npy'),n_test) |
|
|
159 |
loss_axial_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/train_loss_axial.npy'),n_test) |
|
|
160 |
acc_sag_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/train_acc_sag.npy'),n_test) |
|
|
161 |
loss_sag_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/train_loss_sag.npy'),n_test) |
|
|
162 |
acc_cor_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/train_acc_cor.npy'),n_test) |
|
|
163 |
loss_cor_nodrop = epoch_average(np.load('Results/train_hist/region_nodrop/train_loss_cor.npy'),n_test) |
|
|
164 |
|
|
|
165 |
n_test = int(13*dim) |
|
|
166 |
acc_cor_noaug = epoch_average(np.load('Results/train_hist/region_noaug/train_acc_cor.npy'),n_test) |
|
|
167 |
loss_cor_noaug = epoch_average(np.load('Results/train_hist/region_noaug/train_loss_cor.npy'),n_test) |
|
|
168 |
acc_sag_noaug = epoch_average(np.load('Results/train_hist/region_noaug/train_acc_sag.npy'),n_test) |
|
|
169 |
loss_sag_noaug = epoch_average(np.load('Results/train_hist/region_noaug/train_loss_sag.npy'),n_test) |
|
|
170 |
acc_axial_noaug = epoch_average(np.load('Results/train_hist/region_noaug/train_acc_axial.npy'),n_test) |
|
|
171 |
loss_axial_noaug = epoch_average(np.load('Results/train_hist/region_noaug/train_loss_axial.npy'),n_test) |
|
|
172 |
|
|
|
173 |
acc_axial_nothing = epoch_average(np.load('Results/train_hist/region_nothing/train_acc_axial.npy'),n_test) |
|
|
174 |
loss_axial_nothing = epoch_average(np.load('Results/train_hist/region_nothing/train_loss_axial.npy'),n_test) |
|
|
175 |
acc_sag_nothing = epoch_average(np.load('Results/train_hist/region_nothing/train_acc_sag.npy'),n_test) |
|
|
176 |
loss_sag_nothing = epoch_average(np.load('Results/train_hist/region_nothing/train_loss_sag.npy'),n_test) |
|
|
177 |
acc_cor_nothing = epoch_average(np.load('Results/train_hist/region_nothing/train_acc_cor.npy'),n_test) |
|
|
178 |
loss_cor_nothing = epoch_average(np.load('Results/train_hist/region_nothing/train_loss_cor.npy'),n_test) |
|
|
179 |
|
|
|
180 |
plt.subplot(3,4,1) |
|
|
181 |
plt.plot(acc_cor, label = 'Both') |
|
|
182 |
plt.plot(acc_cor_noaug, label = 'Only drop out') |
|
|
183 |
plt.plot(acc_cor_nodrop, label = 'Only augmentation') |
|
|
184 |
plt.plot(acc_cor_nothing, label = 'Nothing') |
|
|
185 |
axes = plt.gca() |
|
|
186 |
axes.set_ylim([0.95,1]) |
|
|
187 |
plt.legend(loc='lower right') |
|
|
188 |
plt.xlabel('Epochs') |
|
|
189 |
plt.ylabel('Accuracy') |
|
|
190 |
plt.title('Train accuracy coronal network') |
|
|
191 |
plt.subplot(3,4,2) |
|
|
192 |
plt.title('Train loss coronal network') |
|
|
193 |
plt.plot(loss_cor, label = 'Both') |
|
|
194 |
plt.plot(loss_cor_noaug, label = 'Only drop out') |
|
|
195 |
plt.plot(loss_cor_nodrop, label = 'Only augmentation') |
|
|
196 |
plt.plot(loss_cor_nothing, label = 'Nothing') |
|
|
197 |
plt.legend(loc='upper right') |
|
|
198 |
plt.xlabel('Epochs') |
|
|
199 |
plt.ylabel('Loss') |
|
|
200 |
axes = plt.gca() |
|
|
201 |
axes.set_ylim([0,0.05]) |
|
|
202 |
|
|
|
203 |
plt.subplot(3,4,5) |
|
|
204 |
plt.plot(acc_sag, label = 'Both') |
|
|
205 |
plt.plot(acc_sag_noaug, label = 'Only drop out') |
|
|
206 |
plt.plot(acc_sag_nodrop, label = 'Only augmentation') |
|
|
207 |
plt.plot(acc_sag_nothing, label = 'Nothing') |
|
|
208 |
plt.legend(loc='lower right') |
|
|
209 |
axes = plt.gca() |
|
|
210 |
axes.set_ylim([0.95,1]) |
|
|
211 |
plt.xlabel('Epochs') |
|
|
212 |
plt.ylabel('Accuracy') |
|
|
213 |
plt.title('Train accuracy sagittal network') |
|
|
214 |
plt.subplot(3,4,6) |
|
|
215 |
plt.title('Train loss sigittal network') |
|
|
216 |
plt.plot(loss_sag, label = 'Both') |
|
|
217 |
plt.plot(loss_sag_noaug, label = 'Only drop out') |
|
|
218 |
plt.plot(loss_sag_nodrop, label = 'Only augmentation') |
|
|
219 |
plt.plot(loss_sag_nothing, label = 'Nothing') |
|
|
220 |
plt.legend(loc='upper right') |
|
|
221 |
plt.xlabel('Epochs') |
|
|
222 |
plt.ylabel('Loss') |
|
|
223 |
axes = plt.gca() |
|
|
224 |
axes.set_ylim([0,0.05]) |
|
|
225 |
|
|
|
226 |
plt.subplot(3,4,9) |
|
|
227 |
plt.plot(acc_axial, label = 'Both') |
|
|
228 |
plt.plot(acc_axial_noaug, label = 'Only drop out') |
|
|
229 |
plt.plot(acc_axial_nodrop, label = 'Only augmentation') |
|
|
230 |
plt.plot(acc_axial_nothing, label = 'Nothing') |
|
|
231 |
plt.legend(loc='lower right') |
|
|
232 |
axes = plt.gca() |
|
|
233 |
axes.set_ylim([0.95,1]) |
|
|
234 |
plt.xlabel('Epochs') |
|
|
235 |
plt.ylabel('Accuracy') |
|
|
236 |
plt.title('Train accuracy axial network') |
|
|
237 |
plt.subplot(3,4,10) |
|
|
238 |
plt.plot(loss_axial, label = 'Both') |
|
|
239 |
plt.plot(loss_axial_noaug, label = 'Only drop out') |
|
|
240 |
plt.plot(loss_axial_nodrop, label = 'Only augmentation') |
|
|
241 |
plt.plot(loss_axial_nothing, label = 'Nothing') |
|
|
242 |
plt.title('Train loss axial network') |
|
|
243 |
plt.legend(loc='upper right') |
|
|
244 |
plt.xlabel('Epochs') |
|
|
245 |
plt.ylabel('Loss') |
|
|
246 |
axes = plt.gca() |
|
|
247 |
axes.set_ylim([0,0.05]) |
|
|
248 |
|