[89883a]: / train.py

Download this file

140 lines (108 with data), 3.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import cv2
import numpy as np
from glob import glob
from sklearn.utils import shuffle
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Recall, Precision
from models.unet import get_unet_model
from metrics import dice_loss, dice_coef, iou
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
IMG_HEIGHT = 512
IMG_WIDTH = 512
AUTO = tf.data.AUTOTUNE
def create_dir(path):
"""Create a directory."""
if not os.path.exists(path):
os.makedirs(path)
def shuffling(x, y):
x, y = shuffle(x, y, random_state=42)
return x, y
def load_data(path):
x = sorted(glob(os.path.join(path, "image", "*.jpg")))
y = sorted(glob(os.path.join(path, "mask", "*.jpg")))
return x, y
def preprocess_image(path):
path = path.decode()
x = cv2.imread(path, cv2.IMREAD_COLOR)
x = x / 255.0
x = x.astype(np.float32)
return x
def preprocess_mask(path):
path = path.decode()
x = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
x = x / 255.0
x = x > 0.5
x = x.astype(np.float32)
x = np.expand_dims(x, axis=-1)
return x
def preprocess_data(x, y):
def _parse(x, y):
x = preprocess_image(x)
y = preprocess_mask(y)
return x, y
x, y = tf.numpy_function(_parse, [x, y], [tf.float32, tf.float32])
x.set_shape([IMG_HEIGHT, IMG_WIDTH, 3])
y.set_shape([IMG_HEIGHT, IMG_WIDTH, 1])
return x, y
def load_dataset(x, y, batch_size=8):
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = (
dataset.map(preprocess_data, num_parallel_calls=AUTO)
.batch(batch_size)
.prefetch(AUTO)
)
return dataset
if __name__ == "__main__":
"""Seeding"""
SEEDS = 42
np.random.seed(SEEDS)
tf.random.set_seed(SEEDS)
# Create a MirroredStrategy.
strategy = tf.distribute.MirroredStrategy()
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
""" Directory for storing files """
create_dir("files")
""" Hyperparameters """
batch_size = 16
lr = 1e-4
num_epochs = 200
model_path = os.path.join("files", "model.h5")
csv_path = os.path.join("files", "data.csv")
""" Dataset """
dataset_path = os.path.join("new_data")
train_path = os.path.join(dataset_path, "train")
valid_path = os.path.join(dataset_path, "valid")
train_x, train_y = load_data(train_path)
train_x, train_y = shuffling(train_x, train_y)
valid_x, valid_y = load_data(valid_path)
print(f"Train: {len(train_x)} - {len(train_y)}")
print(f"Valid: {len(valid_x)} - {len(valid_y)}")
train_dataset = load_dataset(train_x, train_y, batch_size=batch_size)
valid_dataset = load_dataset(valid_x, valid_y, batch_size=batch_size)
""" Model """
# Open a strategy scope.
with strategy.scope():
model = get_unet_model((IMG_HEIGHT, IMG_WIDTH, 3))
metrics = [dice_coef, iou, Recall(), Precision()]
model.compile(loss=dice_loss, optimizer=Adam(lr), metrics=metrics)
"""Setting up Training Callbacks"""
train_callbacks = [
tf.keras.callbacks.ModelCheckpoint(model_path, verbose=1, save_best_only=True),
tf.keras.callbacks.ReduceLROnPlateau(
monitor="val_loss", factor=0.1, patience=10, min_lr=1e-7, verbose=1
),
tf.keras.callbacks.CSVLogger(csv_path),
tf.keras.callbacks.TensorBoard(),
tf.keras.callbacks.EarlyStopping(
monitor="val_loss", patience=10, restore_best_weights=False
),
]
history = model.fit(
train_dataset,
epochs=num_epochs,
validation_data=valid_dataset,
callbacks=train_callbacks,
shuffle=False,
)