|
a |
|
b/dataloader/data.py |
|
|
1 |
import os |
|
|
2 |
import cv2 |
|
|
3 |
from glob import glob |
|
|
4 |
from tqdm import tqdm |
|
|
5 |
from sklearn.model_selection import train_test_split |
|
|
6 |
from albumentations import HorizontalFlip, VerticalFlip, Rotate |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
def create_dir(path): |
|
|
10 |
""" |
|
|
11 |
Create a directory. |
|
|
12 |
""" |
|
|
13 |
if not os.path.exists(path): |
|
|
14 |
os.makedirs(path) |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def load_data(path, split=0.2): |
|
|
18 |
""" |
|
|
19 |
Load the images and masks |
|
|
20 |
""" |
|
|
21 |
images = sorted(glob(f"{path}/*/image/*.png")) |
|
|
22 |
masks = sorted(glob(f"{path}/*/mask/*.png")) |
|
|
23 |
|
|
|
24 |
""" Split the data """ |
|
|
25 |
split_size = int(len(images) * split) |
|
|
26 |
train_x, valid_x = train_test_split(images, test_size=split_size, random_state=42) |
|
|
27 |
train_y, valid_y = train_test_split(masks, test_size=split_size, random_state=42) |
|
|
28 |
|
|
|
29 |
return (train_x, train_y), (valid_x, valid_y) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
def augment_data(images, masks, save_path, augment=True): |
|
|
33 |
""" |
|
|
34 |
Performing data augmentation. |
|
|
35 |
""" |
|
|
36 |
IMG_HEIGHT = 512 |
|
|
37 |
IMG_WIDTH = 512 |
|
|
38 |
|
|
|
39 |
for idx, (x, y) in tqdm(enumerate(zip(images, masks)), total=len(images)): |
|
|
40 |
"""Extracting the directory and image name""" |
|
|
41 |
directory_name = x.split("/")[-3] |
|
|
42 |
name = directory_name + "_" + x.split("/")[-1].split(".")[0] |
|
|
43 |
|
|
|
44 |
""" Read the image and mask """ |
|
|
45 |
x = cv2.imread(x, cv2.IMREAD_COLOR) |
|
|
46 |
y = cv2.imread(y, cv2.IMREAD_COLOR) |
|
|
47 |
|
|
|
48 |
if augment == True: |
|
|
49 |
aug = HorizontalFlip(p=1.0) # Applying Horizontal Flip 100% |
|
|
50 |
augmented = aug(image=x, mask=y) |
|
|
51 |
x1 = augmented["image"] |
|
|
52 |
y1 = augmented["mask"] |
|
|
53 |
|
|
|
54 |
aug = VerticalFlip(p=1) # Applying Vertical Flip 100% |
|
|
55 |
augmented = aug(image=x, mask=y) |
|
|
56 |
x2 = augmented["image"] |
|
|
57 |
y2 = augmented["mask"] |
|
|
58 |
|
|
|
59 |
aug = Rotate(limit=45, p=1.0) # Applying Rotation till 45 degress |
|
|
60 |
augmented = aug(image=x, mask=y) |
|
|
61 |
x3 = augmented["image"] |
|
|
62 |
y3 = augmented["mask"] |
|
|
63 |
|
|
|
64 |
X = [x, x1, x2, x3] |
|
|
65 |
Y = [y, y1, y2, y3] |
|
|
66 |
|
|
|
67 |
else: |
|
|
68 |
X = [x] |
|
|
69 |
Y = [y] |
|
|
70 |
|
|
|
71 |
idx = 0 |
|
|
72 |
for i, m in zip(X, Y): |
|
|
73 |
i = cv2.resize(i, (IMG_WIDTH, IMG_HEIGHT)) |
|
|
74 |
m = cv2.resize(m, (IMG_WIDTH, IMG_HEIGHT)) |
|
|
75 |
m = m / 255.0 |
|
|
76 |
m = (m > 0.5) * 255 |
|
|
77 |
|
|
|
78 |
if len(X) == 1: |
|
|
79 |
tmp_image_name = f"{name}.jpg" |
|
|
80 |
tmp_mask_name = f"{name}.jpg" |
|
|
81 |
else: |
|
|
82 |
tmp_image_name = f"{name}_{idx}.jpg" |
|
|
83 |
tmp_mask_name = f"{name}_{idx}.jpg" |
|
|
84 |
|
|
|
85 |
image_path = os.path.join(save_path, "image/", tmp_image_name) |
|
|
86 |
mask_path = os.path.join(save_path, "mask/", tmp_mask_name) |
|
|
87 |
|
|
|
88 |
cv2.imwrite(image_path, i) |
|
|
89 |
cv2.imwrite(mask_path, m) |
|
|
90 |
|
|
|
91 |
idx += 1 |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
if __name__ == "__main__": |
|
|
95 |
""" |
|
|
96 |
Load the dataset |
|
|
97 |
""" |
|
|
98 |
dataset_path = os.path.join("data", "train") |
|
|
99 |
(train_x, train_y), (valid_x, valid_y) = load_data(dataset_path, split=0.2) |
|
|
100 |
print("Train: ", len(train_x)) |
|
|
101 |
print("Valid: ", len(valid_x)) |
|
|
102 |
|
|
|
103 |
""" Create the directories """ |
|
|
104 |
create_dir("new_data/train/image/") |
|
|
105 |
create_dir("new_data/train/mask/") |
|
|
106 |
create_dir("new_data/valid/image/") |
|
|
107 |
create_dir("new_data/valid/mask/") |
|
|
108 |
|
|
|
109 |
""" Augment the data """ |
|
|
110 |
augment_data( |
|
|
111 |
train_x, train_y, "new_data/train/", augment=True |
|
|
112 |
) # Applying Data Augmentation for training data |
|
|
113 |
augment_data(valid_x, valid_y, "new_data/valid/", augment=False) |