[d255cc]: / testing.py

Download this file

513 lines (406 with data), 19.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import os
import cv2
import numpy as np
import torch
from torch.cuda.amp import autocast
import re
import glob
# 导入SAM2相关模块
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
def inference_sam2_compare_models(
image_path,
mask_paths,
model_cfg,
sam2_checkpoint,
fine_tuned_path=None,
num_samples_per_mask=10,
output_dir=None,
show_results=False,
device="cuda"
):
def read_image(image_path):
if not os.path.exists(image_path):
raise FileNotFoundError(f"图像文件不存在: {image_path}")
img = cv2.imread(image_path)
if img is None:
raise ValueError(f"无法读取图像: {image_path}")
img = img[..., ::-1] # BGR to RGB
# 将图像调整到最大尺寸1024
resize_factor = np.min([1024 / img.shape[1], 1024 / img.shape[0]])
img = cv2.resize(img, (int(img.shape[1] * resize_factor), int(img.shape[0] * resize_factor)))
return img, resize_factor
# 在输入掩码内采样点
def get_points(mask, num_points):
points = []
coords = np.argwhere(mask > 0)
if len(coords) == 0:
print("警告:掩码为空,无法采样点")
return np.array([])
for _ in range(num_points):
if len(coords) > 0:
idx = np.random.randint(len(coords))
yx = coords[idx]
points.append([[yx[1], yx[0]]])
return np.array(points) if points else np.array([])
# 读取图像
image, resize_factor = read_image(image_path)
# 读取所有掩码并采样点
all_points = []
all_point_labels = []
all_masks = []
for i, mask_path in enumerate(mask_paths):
if not os.path.exists(mask_path):
print(f"警告:掩码文件不存在: {mask_path},将跳过")
continue
mask = cv2.imread(mask_path, 0) # 读取掩码
if mask is None:
print(f"警告:无法读取掩码: {mask_path},将跳过")
continue
# 调整掩码大小以匹配图像 - 使用resize_factor而不是r
mask = cv2.resize(mask, (int(mask.shape[1] * resize_factor), int(mask.shape[0] * resize_factor)),
interpolation=cv2.INTER_NEAREST)
all_masks.append(mask)
# 获取该掩码的点
points = get_points(mask, num_samples_per_mask)
if len(points) > 0:
all_points.append(points)
all_point_labels.append(np.ones((len(points), 1)))
if not all_points:
raise ValueError("所有掩码都无法采样点,无法进行分割")
# 合并所有掩码的点和标签
input_points = np.concatenate(all_points, axis=0)
input_labels = np.concatenate(all_point_labels, axis=0)
# 创建真实掩码的可视化
ground_truth_map = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
ground_truth_rgb = np.zeros((image.shape[0], image.shape[1], 3), dtype=np.uint8)
# 为每个掩码分配唯一的颜色和ID
colors = {}
for i, mask in enumerate(all_masks):
# 生成随机颜色,但确保所有可视化中使用相同颜色
if i+1 not in colors:
colors[i+1] = [
np.random.randint(255),
np.random.randint(255),
np.random.randint(255)
]
# 更新掩码图和RGB图
ground_truth_map[mask > 0] = i + 1
ground_truth_rgb[mask > 0] = colors[i+1]
# 创建真实掩码的混合图像
gt_blended_image = (ground_truth_rgb / 2 + image / 2).astype(np.uint8)
# 初始化结果字典
results = {
"ground_truth": {
"map": ground_truth_map,
"rgb": ground_truth_rgb,
"blended": gt_blended_image
}
}
# 使用两个模型进行推理
for model_key, model_path in [
("original", sam2_checkpoint),
("fine_tuned", fine_tuned_path)
]:
# 如果是微调模型但路径为None,则跳过
if model_key == "fine_tuned" and model_path is None:
continue
print(f"\n使用{model_key}模型进行推理...")
# 初始化SAM2模型
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
predictor = SAM2ImagePredictor(sam2_model)
# 如果是微调模型,加载微调权重
if model_key == "fine_tuned":
try:
predictor.model.load_state_dict(torch.load(model_path, weights_only=True))
except:
predictor.model.load_state_dict(torch.load(model_path))
print(f"已加载微调模型: {model_path}")
# 设置模型为评估模式
predictor.model.eval()
# 使用混合精度进行推理
with torch.no_grad():
# 图像编码器
predictor.set_image(image)
print(f"{model_key}模型正在进行预测...")
print("输入点形状:", input_points.shape)
# prompt编码器 + mask解码器
masks, scores, _ = predictor.predict(
point_coords=input_points,
point_labels=input_labels,
multimask_output=True
)
print(f"{model_key}模型预测完成")
print(f"预测掩码数量: {masks.shape[0] if hasattr(masks, 'shape') else '未知'}")
# 处理masks和scores
if isinstance(masks, torch.Tensor):
np_masks = masks.cpu().numpy()
if np_masks.ndim > 3:
np_masks = np_masks[:, 0]
else:
np_masks = masks
if np_masks.ndim > 3:
np_masks = np_masks[:, 0]
if isinstance(scores, torch.Tensor):
np_scores = scores.cpu().numpy()
if np_scores.ndim > 1:
np_scores = np_scores[:, 0]
else:
np_scores = scores
if np_scores.ndim > 1:
np_scores = np_scores[:, 0]
# 根据分数排序掩码(降序)
sorted_indices = np.argsort(np_scores)[::-1]
sorted_masks = np_masks[sorted_indices]
# 创建分割图
seg_map = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
occupancy_mask = np.zeros((image.shape[0], image.shape[1]), dtype=bool)
for i, mask in enumerate(sorted_masks):
# 确保掩码是布尔类型
mask_bool = mask.astype(bool)
# 计算重叠比例
# 使用逻辑与运算而不是位与运算
overlap_ratio = np.logical_and(mask_bool, occupancy_mask).sum() / (mask_bool.sum() + 1e-6)
if mask_bool.sum() > 0 and overlap_ratio > 0.15:
continue
# 更新掩码和分割图
non_overlap = np.logical_and(mask_bool, np.logical_not(occupancy_mask))
seg_map[non_overlap] = i + 1
occupancy_mask[mask_bool] = True
# 创建可视化图像(使用与真实掩码相同的颜色)
rgb_image = np.zeros((seg_map.shape[0], seg_map.shape[1], 3), dtype=np.uint8)
for id_class in range(1, seg_map.max() + 1):
# 尝试使用与真实掩码相同的颜色
color = colors.get(id_class, [
np.random.randint(255),
np.random.randint(255),
np.random.randint(255)
])
rgb_image[seg_map == id_class] = color
# 创建混合图像
blended_image = (rgb_image / 2 + image / 2).astype(np.uint8)
# 创建差异图 (显示预测与真实值的不同)
difference = np.zeros((image.shape[0], image.shape[1], 3), dtype=np.uint8)
# 绿色表示正确预测的区域
correct = np.logical_and(ground_truth_map > 0, seg_map > 0)
difference[correct] = [0, 255, 0]
# 红色表示未预测到的区域 (漏检)
missed = np.logical_and(ground_truth_map > 0, seg_map == 0)
difference[missed] = [255, 0, 0]
# 蓝色表示错误预测的区域 (误检)
false_positive = np.logical_and(ground_truth_map == 0, seg_map > 0)
difference[false_positive] = [0, 0, 255]
# 保存到结果字典
results[model_key] = {
"map": seg_map,
"rgb": rgb_image,
"blended": blended_image,
"difference": difference
}
# 保存结果
if output_dir:
os.makedirs(output_dir, exist_ok=True)
# 保存真实掩码
cv2.imwrite(os.path.join(output_dir, "gt_segmentation.png"),
cv2.cvtColor(results["ground_truth"]["rgb"], cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(output_dir, "gt_blended.png"),
cv2.cvtColor(results["ground_truth"]["blended"], cv2.COLOR_RGB2BGR))
# 保存原始模型结果
if "original" in results:
cv2.imwrite(os.path.join(output_dir, "original_segmentation.png"),
cv2.cvtColor(results["original"]["rgb"], cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(output_dir, "original_blended.png"),
cv2.cvtColor(results["original"]["blended"], cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(output_dir, "original_difference.png"),
cv2.cvtColor(results["original"]["difference"], cv2.COLOR_RGB2BGR))
# 保存微调模型结果
if "fine_tuned" in results:
cv2.imwrite(os.path.join(output_dir, "fine_tuned_segmentation.png"),
cv2.cvtColor(results["fine_tuned"]["rgb"], cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(output_dir, "fine_tuned_blended.png"),
cv2.cvtColor(results["fine_tuned"]["blended"], cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(output_dir, "fine_tuned_difference.png"),
cv2.cvtColor(results["fine_tuned"]["difference"], cv2.COLOR_RGB2BGR))
# 创建三模型对比图 (并排显示)
# 计算每个模型的列宽
col_width = image.shape[1]
models_count = 1 + ("original" in results) + ("fine_tuned" in results)
comparison = np.zeros((image.shape[0], col_width * models_count, 3), dtype=np.uint8)
# 添加真实掩码
col_idx = 0
comparison[:, col_idx*col_width:(col_idx+1)*col_width] = results["ground_truth"]["blended"]
col_idx += 1
# 添加原始模型结果
if "original" in results:
comparison[:, col_idx*col_width:(col_idx+1)*col_width] = results["original"]["blended"]
col_idx += 1
# 添加微调模型结果
if "fine_tuned" in results:
comparison[:, col_idx*col_width:(col_idx+1)*col_width] = results["fine_tuned"]["blended"]
# 添加标签
font = cv2.FONT_HERSHEY_SIMPLEX
col_idx = 0
cv2.putText(comparison, "Ground Truth", (col_idx*col_width + 10, 30), font, 1, (255, 255, 255), 2)
col_idx += 1
if "original" in results:
cv2.putText(comparison, "Original Model", (col_idx*col_width + 10, 30), font, 1, (255, 255, 255), 2)
col_idx += 1
if "fine_tuned" in results:
cv2.putText(comparison, "Fine-tuned Model", (col_idx*col_width + 10, 30), font, 1, (255, 255, 255), 2)
cv2.imwrite(os.path.join(output_dir, "model_comparison.png"),
cv2.cvtColor(comparison, cv2.COLOR_RGB2BGR))
print(f"所有结果已保存到 {output_dir} 目录")
# 显示结果(在有GUI的环境中)
if show_results:
try:
if "original" in results and "fine_tuned" in results:
cv2.imshow("模型对比", cv2.cvtColor(comparison, cv2.COLOR_RGB2BGR))
print("按任意键关闭窗口...")
cv2.waitKey(0)
cv2.destroyAllWindows()
except Exception as e:
print(f"无法显示图像,可能是在无GUI环境中运行: {e}")
print("结果已保存到指定目录")
return results
def find_related_masks_advanced(image_path, masks_dir):
"""
使用更高级的方法查找与图像相关的掩码
"""
# 获取图像文件名(不含扩展名)
image_filename = os.path.basename(image_path)
image_name, _ = os.path.splitext(image_filename)
# 基本情况:掩码名以图像名开头
pattern1 = os.path.join(masks_dir, f"{image_name}*.png")
masks1 = glob.glob(pattern1)
# 从图像名中提取患者ID和序列号,用于更复杂的匹配
# 例如: a4c_PatientD0062_a4c_93.jsonD_116.jpg
# 提取: PatientD0062, 93, 116
matches = re.search(r'(Patient[A-Za-z0-9]+).*?(\d+)\.json[A-Z]_(\d+)', image_name)
if matches:
patient_id = matches.group(1)
seq_num1 = matches.group(2)
seq_num2 = matches.group(3)
# 使用提取的信息尝试其他可能的匹配模式
pattern2 = os.path.join(masks_dir, f"*{patient_id}*{seq_num1}*{seq_num2}*.png")
masks2 = glob.glob(pattern2)
# 合并去重
all_masks = list(set(masks1 + masks2))
else:
all_masks = masks1
print(f"为图像 {image_filename} 找到 {len(all_masks)} 个相关掩码:")
for mask in all_masks:
print(f" - {os.path.basename(mask)}")
return all_masks
# 读取图像
def process_image_by_name(data_dir, image_filename, model_cfg, sam2_checkpoint, fine_tuned_path=None, output_dir=None):
"""
通过图像文件名处理单个图像,自动查找相关掩码
参数:
data_dir: 数据根目录
image_filename: 图像文件名(不含路径)
model_cfg: 模型配置文件路径
sam2_checkpoint: 原始模型检查点路径
fine_tuned_path: 微调模型路径
output_dir: 输出目录
"""
images_dir = os.path.join(data_dir, "JPEGImages")
masks_dir = os.path.join(data_dir, "Annotations")
# 构建完整图像路径
image_path = os.path.join(images_dir, image_filename)
if not os.path.exists(image_path):
print(f"图像文件不存在: {image_path}")
return
# 自动查找相关掩码
mask_paths = find_related_masks_advanced(image_path, masks_dir)
if not mask_paths:
print("未找到相关掩码文件")
return
# 设置输出目录(使用图像名作为子目录)
if output_dir is None:
image_name, _ = os.path.splitext(image_filename)
output_dir = os.path.join("results", image_name)
# 运行模型比较
results = inference_sam2_compare_models(
image_path=image_path,
mask_paths=mask_paths,
model_cfg=model_cfg,
sam2_checkpoint=sam2_checkpoint,
fine_tuned_path=fine_tuned_path,
output_dir=output_dir,
show_results=False
)
return results
if __name__ == "__main__":
# 设置基本路径
data_dir = "/media/ps/data/zhy/Sam2_new/sam2/data_train"
images_dir = os.path.join(data_dir, "JPEGImages")
masks_dir = os.path.join(data_dir, "Annotations")
# 模型配置
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam2_checkpoint = "checkpoints/sam2.1_hiera_large.pt"
fine_tuned_path = "models/model_final.torch"
# 指定图像文件
image_filename = "a4c_PatientD0062_a4c_93.jsonD_116.jpg"
image_path = os.path.join(images_dir, image_filename)
print(f"检查图像文件...")
if not os.path.exists(image_path):
print(f"图像文件不存在: {image_path}")
exit(1)
# 自动查找相关掩码
mask_paths = find_related_masks_advanced(image_path, masks_dir)
# 检查掩码文件
valid_masks = []
for mask_path in mask_paths:
if os.path.exists(mask_path):
valid_masks.append(mask_path)
print(f"掩码文件存在: {mask_path}")
else:
print(f"掩码文件不存在: {mask_path}")
if not valid_masks:
print("没有有效的掩码文件")
exit(1)
# 检查其他文件
for path, desc in [
(model_cfg, "模型配置文件"),
(sam2_checkpoint, "预训练检查点"),
(fine_tuned_path, "微调模型")
]:
exists = os.path.exists(path)
print(f"{desc}: {path} {'存在' if exists else '不存在'}")
# 设置输出目录
output_dir = os.path.join("results_comparison", os.path.splitext(image_filename)[0])
try:
# 运行推理
print("\n开始模型对比推理...")
results = inference_sam2_compare_models(
image_path=image_path,
mask_paths=valid_masks,
model_cfg=model_cfg,
sam2_checkpoint=sam2_checkpoint,
fine_tuned_path=fine_tuned_path,
num_samples_per_mask=10,
output_dir=output_dir,
show_results=False
)
print("对比推理完成!")
# 输出简单的性能指标
if "original" in results and "fine_tuned" in results:
gt_map = results["ground_truth"]["map"]
for model_key in ["original", "fine_tuned"]:
model_map = results[model_key]["map"]
# 计算基本指标
true_positive = np.sum(np.logical_and(gt_map > 0, model_map > 0))
false_negative = np.sum(np.logical_and(gt_map > 0, model_map == 0))
false_positive = np.sum(np.logical_and(gt_map == 0, model_map > 0))
# 计算性能指标
precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
print(f"\n{model_key.capitalize()}模型性能:")
print(f"精确率(Precision): {precision:.4f}")
print(f"召回率(Recall): {recall:.4f}")
print(f"F1分数: {f1:.4f}")
except Exception as e:
print(f"推理过程中出错: {e}")
import traceback
traceback.print_exc()