
RotCAtt-TransUNet++: Novel Deep Neural Network
for Sophisticated Cardiac Segmentation

Quoc-Bao Nguyen-Le 1,2,3, Tuan-Hy Le 1, Anh-Triet Do 1, and Quoc-Huy Trinh 2, 3

1Le Hong Phong High School for the Gifted, Ho Chi Minh City, Vietnam
2Faculty of Information Technology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam

3Viet Nam National University, Ho Chi Minh City, Vietnam

Abstract—Cardiovascular disease is a major global health
concern, contributing significantly to global mortality. Accurately
segmenting cardiac medical imaging data is crucial for reducing
fatality rates associated with these conditions. However, current
state-of-the-art (SOTA) neural networks, including CNN-based
and Transformer-based approaches, face challenges in capturing
both inter-slice connections and intra-slice details, especially in
datasets featuring intricate, long-range details along the z-axis like
coronary arteries. Existing methods also struggle with differen-
tiating non-cardiac components from the myocardium, resulting
in segmentation inaccuracies and the ”spraying” phenomenon.
To address these issues, we introduce RotCAtt-TransUNet++, a
novel architecture designed for robust segmentation of intricate
cardiac structures. Our approach enhances global context mod-
eling through multiscale feature aggregation and nested skip
connections in the encoder. Transformer layers facilitate capturing
intra-slice interactions, while a rotatory attention mechanism
handles inter-slice connectivity. A channel-wise cross-attention
gate integrates multiscale information and decoder features,
effectively bridging semantic gaps. Experimental results across
multiple datasets demonstrate superior performance over current
methods, achieving near-perfect annotation of coronary arteries
and myocardium. Ablation studies confirm that our rotatory
attention mechanism significantly improves segmentation accu-
racy by transforming embedded vectorized patches in semantic
dimensional space.

I. INTRODUCTION

Medical image segmentation is crucial for disease and tumor
detection. While Manual segmentation remains the gold stan-
dard in delineating pathological structures, it is labor-intensive,
time-consuming, and prone to human error [1]. Automated
segmentation is increasingly needed to reduce reliance on
expert knowledge and speed up the process. With its intricate
structures and fine details, the heart presents significant chal-
lenges in this context. Previous studies primarily are binary
segmentation tasks using single-labeled dataset [2], [3]. Recent
studies opted for multi-class segmentation with two main
datasets, MMWHS [4] and ACDC [5], in 2017. Nevertheless,
these datasets only annotate basic regions in an unsophisticated
way that lack significant details, such as coronary arteries and
heart capillaries. More sophisticated-annotated datasets such as
ImageCHD [6] with 8 labels (2021) and VHSCDD with 12
labels (2023) challenge SOTA networks. Additionally, SOTA
networks, both CNN-based and Transformer-based networks,
have not undergone evaluation using the same cardiac datasets,
leading to the lack of fair comparison of these networks. In

this paper, we conduct experiments with SOTA networks (both
CNN-based and Transformer-based approaches) and propose
our novel self-designed architecture that proves its superiority.

The content of this paper is organized as follows. In Sec-
tion II, we briefly review existing methods related to our
work. Then, we present our proposed solution in Section III.
Experiments and result analysis are discussed in Section IV.
Finally, the conclusion and implication are in Section V.

II. RELATED WORKS

Fully Convolutional Neural Networks (FCNs), has become
the de facto standard in medical image segmentation [7], [8].
UNet [9] introduced direct skip connections joining feature
maps at the same scale to mitigate detail loss in deeper layers.
UNet++ [10] further improved upon UNet by incorporating
nested skip connections. ResUNet [11] employs ResNet units
with atrous convolutions and pyramid pooling to address the
semantic gap. However, CNN-based methods struggle with
capturing long-range dependencies and global contexts due to
their inherited locality [5]. Attention mechanisms, such as those
in U-Net Attention [12], attempt to enhance performance by
focusing on relevant details and ignoring distractions. Despite
these advancements, CNN-based approaches still yield weak
performance, particularly with structures exhibiting significant
inter-patient variability [1], [5].

Initially designed for NLP tasks, transformers are known
for their Multi-head Self-Attention (MSA) mechanism, which
excels at capturing long-range interactions. In computer vi-
sion and segmentation, TransUNet [5] utilizes a Transformer
encoder for global information learning and CNN decoders
for spatial details extraction. Swin-Unet [13], conversely, re-
places CNNs with a complete Transformer architecture, em-
ploying a shifted window mechanism for detail extraction
and patch-expanding layers for upsampling. However, current
Transformer-based methods focus self-attention solely on patch
interactions and skip connections, processing volumetric data
slice by slice and limiting inter-slice information integration.
This constraint affects TransUNet’s ability to achieve seamless
segmentation across adjacent slices.

3D networks like UNet 3D [14] and VNet [15] preserve inter-
slice details but face limitations in GPU memory and compu-
tational demands. Thus, we introduce RotCAtt-TransUNet++,
a lightweight 2.5D network, to overcome these issues.
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Fig. 1. RotCAtt-TransUNet++ Architecture: combining rotatory attention mechanism with channel-wise attention gates for enhanced feature fusion in the
decoder. Leveraging the Transformer-Unet hybrid model with enriched nested skip connections for multiscale feature extraction.

III. OUR PROPOSED METHOD

A. Architecture Overview

The architecture diagram can be seen in Figure 1. Through
meticulous experimentation and ablation studies, we observed
the efficacy of the UNet++ [10] architecture coupled with
nested skip connections to preserve crucial information in
achieving superior segmentation results. We are also inspired
by pyramid pooling at different scales of Zhao et al. [16]. Thus,
instead of the conventional CNN-based feature extraction ap-
proach, such as ResNet-50 in TransUNet [5], we employ dense
downsampling alongside nested skip connections, yielding four
distinct feature maps X1, X2, X3, X4 at varying resolutions and
depths.

Unlike TransUNet and its variants, which only embed the
last lowest-resolution feature maps, we employ linear embed-
ding for multiscale feature maps. Specifically, the first three
feature maps X1, X2, X3 undergo linear embedding with a
different patch size p to produce different embedded vector
zji ∈ Zi|i ∈ {1, 2, 3}, which simultaneously go through
transformer blocks to capture the interactions between patches
and rotatory attention mechanisms to aggregate the information
from adjacent slices. Within these transformer blocks, com-
prising N transformer layers, the embedded sequence patches
traverse self-attention mechanisms and multilayer perceptrons,
facilitating robust intra-slice information capture and yielding
new encoded image representations E1, E2, E3.

The rotatory attention block, conceived to treat the batch
size as multiple continuous slices, selectively processes three
consecutive slices—designating the first as the left, the second
as the target, and the third as the right—culminating in the

production of 3 vectors R1, R2, R3 encapsulating information
from adjacent slices in the volumetric data. Integration of in-
terslice and intra-slice information yields F1, F2, F3, which are
then reconstructed to their original resolution via upsampling
techniques, resulting in O1, O2, O3.

Finally, X4 undergoes concatenation with O3, perpetuating
this iterative process until the final segmentation map is ob-
tained after 1× 1 convolution.

subsectionFeature Extraction with Nested Skip Connections
The input is structured as (B, 1, H,W ), representing the batch
size, channels, height, and width. The batch size also represents
the number of adjacent slices aggregated in the rotatory atten-
tion block. This input undergoes convolution to yield X1

1 , with
shape (B,C,H,W ), where C = 64. The resulting feature maps
are downsampled to X1

2 , with dimensions (B,C × 2, H
2 ,

W
2 ).

Then, X1
2 is upsampled to (B,C × 2, H,W ).and concatenated

with X1
1 along the C axis, resulting in (B,C× 3, H,W ). This

undergoes further convolution to produce X2
1 , which shares

the same shape as X1
1 but includes aggregated information

from X1
2 . This process continues through subsequent lower-

resolution images.
If we designate the desired number of different-resolution

outputs as D, we have Xj
i ∀i ∈ {1, . . . , D − 1} and

∀j ∈ {1, . . . , D − i}, where Xj
i has shape (B,C ×

2i−1, H
2i−1 ,

W
2i−1 ). The D-th resolution map has a shape of

(B,CD−2, H
2D−1 ,

W
2D−1 ), and bypasses both the Transformer

block and Rotatory Attention block but is instead used for the
decoder. For D = 4, the resulting feature maps are X3

1 , X2
2 ,

X1
3 . simply denoted as Xi for i ∈ 1, 2, 3. These are linearly

embedded via convolution operations E to produce patches
represented as embedded vectors zpi

j ∈ Zi where Zi has shape



Fig. 2. The rotatory attention first uses the target slice to compute new representations for the left (previous slice) and right (next slice) context with a single
attention module to capture the crucial inter-connectivity information from adjacent slices. Then, it uses these left and right representations to calculate the new
representations for the target slice integrating essential information into the current slice.

(B,ni, d
i
f ) and 1 ≤ j ≤ ni. The sequence length and feature

dimension of Zi are ni =
Hi×Wi

p2
i

and dfi , respectively. Ensuring
uniformity across ni for all i, we establish D − 1 patch sizes
pi = 2D−i+1, where i ranges from 1 to D − 1, implying that
p = {24, 23, 22} and the smallest patch size is 22 = 4, given
D = 4

B. Linear Embedding and Positional Embedding
Patch Embedding involves transforming vectorized patches

ẑpi

j ∈ Zi into a latent space of di dimensions using a trainable
linear projection. To preserve the spatial information of the
patches, we incorporate position embedding specific to each
patch, which is then combined with the patch embeddings.

Zi = Ei(Xi) + Ei
pos

Zi = Ẑi + Ei
pos

[zpi

1 , . . . , zpi
n ] = [ẑpi

1 , . . . , ẑpi
n ] + [ei1, . . . , e

i
n]

where Ei is the convolution operation to perform patch embbe-
ding on Xi and produce Ẑi, while Ei

pos ∈ (B,n, dif ) denotes
the position embedding, Zi is the linear embedding projection
after adding vectors ẑpi

j ∈ (B, 1, dif ) with positional vectors
eij ∈ (B, 1, dif ).

C. Transformer Block
The Transformer encoder consists of N layers of Multi-

head Self-Attention (MSA) and Multi-Layer Perceptron (MLP)

blocks. Therefore the output of the l-th ∈ N layer can be
formulated as follows:

Z̄l′

i = MSA(LN(Zl
i)) + Zl

i

Zl+1
i = MLP(LN(Z̄l′

i )) + Z̄l
i

· · ·
Z̄N−1
i = MSA(LN(ZN−1

i )) + ZN−1
i

ZN
i = MLP(LN(Z̄N−1

i )) + Z̄N−1
i

where LN(·) denotes the layer normalization operator and Zl
i

is the encoded image representation at scale i. In each layer
l-th, the encoded image representation Zi undergoes a self-
attention mechanism, enabling encoded patches to learn how
to attend to each other. Mathematically, the attention scores
Ai = Attention(Qi,Ki, Vi) for Zi are computed using scaled
dot product as follows:

Ai = softmax

QiK
T
i√

dif

Vi

where Qi = Wq(Zi),Ki = Wk(Zi), Vi = Wv(Zi) and
Qi,Ki, Vi ∈ (B,n, dif ). The Multi-Layer Perceptron (MLP)
also contains a fully connected layer of size di×4 in the middle.
The resulting Ei maintains the same shape as Zi, which learns
the intra-slice information or the relationship between patches
in one 2D image slice.



TABLE I
BENCHMARK 9 MODELS ACROSS 4 MEDICAL DATASETS

Architecture Params MMWHS Synapse ImageCHD VHSCDD VHSCDD*
DSC IOU HD DSC IOU HD DSC IOU HD DSC IOU HD DSC IOU HD

UNet [9] 124.2M 0.78 0.61 28.3 0.61 0.43 30.5 0.72 0.52 26.1 0.50 0.29 39.4 0.449 0.26 89.5
Att-UNet [12] 32.54M 0.84 0.78 15.6 0.51 0.33 44.9 0.86 0.75 20.2 0.40 0.23 42.9 0.51 0.34 92.1
UNet++ [10] 36.64M 0.96 0.9 13.9 0.54 0.38 30.6 0.85 0.71 21.7 0.79 0.62 28.4 0.72 0.68 68.9

Att-UNet++ [17] 38.50M 0.84 0.78 15.6 0.68 0.51 21.5 0.81 0.65 23.7 0.80 0.64 22.6 0.68 0.62 64.7
ResUNet [11] 52.17M 0.76 0.64 17.6 0.47 0.31 40.6 0.68 0.56 34.2 0.56 0.35 41.9 0.61 0.56 40.9
Swin-unet [13] 165.4M 0.87 0.79 17.3 0.77 0.65 23.9 0.78 0.64 23.6 0.84 0.73 23.5 0.81 0.73 45.1

Att Swin-UNet [18] 165.4M 0.84 0.73 20.4 0.79 0.67 24.5 0.89 0.78 18.7 0.82 0.71 25.6 0.79 0.65 43.1
TransUNet [5] 420.5M 0.91 0.84 15.6 0.76 0.78 32.2 0.86 0.72 22.6 0.85 0.71 22.3 0.76 0.75 41.2

RotCAtt-TransUNet++ 51.51M 0.97 0.92 15.9 0.68 0.61 25.6 0.96 0.89 15.67 0.93 0.91 20.3 0.95 0.92 32.4

D. Rotatory Attention Block

This technique is commonly applied in natural language
processing [19], [20], which involves three main inputs: the
target phrase, the previous phrase (left context), and the next
phrase (right context). This method assumes that adjacent
elements contribute significantly to understanding the cen-
tral/target phrase. In our scenario, if we denote the current en-
coded input representation as Zi ∈ (B,n, dif ), we can treat this
as a collection of images {Z1

i , . . . , Z
k
i , . . . , Z

B
i } where each

Zk
i ∈ (n, dif ). Thus, three consecutive encoded slices/images

can be selected as {Zk−1
i , ZK

i , ZK+1
i } or {Zl, Zt, Zr}. For

simplicity in notation, we temporarily omit the scale index i:

Zl = [zl1, . . . , z
l
j , . . . , Z

l
n] ∈ Rn×df

Zt = [zt1, . . . , z
t
j , . . . , z

t
n] ∈ Rn×df

Zr = [zr1 , . . . , z
r
j , . . . , z

r
n] ∈ Rn×df

The goal is to derive a single vector r ∈ df and integrate it
with Zt to adjust the hidden states or transform the position of
each embedded patch ztj in semantic dimensional space. Zt is
represented as a single vector rt, incorporating necessary infor-
mation from the left and right contexts by attention mechanism
to filter noise and redundant information. Firstly, a single target
representation is formed by:

rt = pooling(zt1, z
t
2, . . . , z

t
n) =

1

n
Σn

j=1z
t
j

Similar to the self-attention mechanism in Transformer lay-
ers, the key and value are extracted from the left context:

Kl = W l
k(Z

l) = [kl1, . . . , k
l
n] ∈ Rn×df

V l = W l
v(Z

l) = [vl1, . . . , v
l
n] ∈ Rn×df

The rt is now used as a query to create the context vector out
of the left context. The scores are calculated with the activated
general score function with tanh activation function, and the
attention scores are calculated with the softmax function:

Sl = [sl1, . . . , s
l
j , . . . , s

l
n] = tanh(Kl · rt + bl)

alj =
exp(elj)

Σn
j=1exp(elj)

A weighted combination of patch embedding is considered
as the component representation for left contexts:

rl = Σn
i=1a

l
i · vli

In Figure 2, we denote the above process as Single Attention
(SA), which is represented as:

SA(Z, r) =


K = Wk(Z), V = Wv(Z)

a = softmax(tanh(K · r + b))

r =
∑
n

a · V

The vector rl is then used as a query to create context
out of the target context to integrate information back into
the center encoded slice/image to produce rl/r = SA(Zt, rl).
An analogous procedure can be performed to obtain the right-
aware target representation rr = SA(Zr, rt) and rr/t =
SA(Zt, rr). Finally, to obtain the full representation vector
r, we perform concatenation: rk = concat([rl, rr, rl/t, rr/t])
with rk ∈ R1×df×4. This r vector contains the aggregated
information between 3 consecutive slices, thus we have B − 2
vectors rk with 1 < k < B. The final vector R is achieved as:
R = Wr(mean(rk|1 < k < B)). But this is only one i-th level
output; thus, we have Ri output. This interslice-informational
vector is added to encoded intra-slice-informational Ei to
retrieve more optimized vectorized patch embeddings Fi.

E. Channel-wise Attention Gate for Feature Fusion

To fuse features with varied semantics between the Chan-
nel Transformer and U-Net decoder effectively, we employ
a channel-wise cross-attention module, guiding channel and
information filtration of Transformer features, resolving am-
biguities with decoder features. Mathematically, we take the
i-th level output Fi after Transformer and Rotatory blocks
to reconstruct or decode the encoded image representations
to get Oi ∈ RC×H×W . The reconstructed Oi are taken
with i-th level decoder feature map Di ∈ RC×H×W as the
inputs of Channel-wise Cross Attention. Spatial squeeze is
performed by a global average pooling (GAP) layer, produc-
ing vector G(X) ∈ RC×1×1 with its kth channel G(X) =

1
H×W

∑H
i=1

∑W
j=1 X

k(i, j). We use this operation to embed
the global spatial information and generate the attention mask:



Fig. 3. Training graphs depict the performance of the RotCAtt-TransUNet++ model across datasets, and the box plots depict Dice/IoU scores across classes.

TABLE II
ABLATION STUDY OF ROTATORY ATTENTION ON VHSCDD 512

Type DSC IOU HD CE
w RotAtt 0.946±0.052 0.918±0.067 32.380±2.59 0.035±0.058

w/o RotAtt 0.904±0.078 0.864±0.037 37.019±2.89 0.048±0.087

Mi = L1 · G(Oi) + L2 · G(Di)

where L1 ∈ RC×C and L2 ∈ RC×C and weights of two
Linear layers and the ReLU operator δ(·), encoding channel-
wise dependencies. Following ECA-Net [21], which empha-
sizes avoiding dimensionality reduction for effective channel
attention, we use a single Linear layer and sigmoid function
to build the channel attention map, then used to excite Oi to
Ôi = σ(Mi)·Oi. The activation σ(Mi) indicates the importance
of channels. Finally, the masked Ôi is concatenated with the
up-sampled features of the i-th level decoder.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation

We experimented with 5 CNN-based and 3 Transformer-
based networks with our own network across 4 datasets: Multi-
Modality Whole Heart Segmentation (MMWHS), Synapse
multi-organ segmentation dataset, The Image Congenital Heart
Diseases (ImageCHD) dataset, and Vietnamese Heart Segmen-
tation and Cardiac Disease Detection (VHSCDD). We used an
NVIDIA RTX 4090 1X GPU with 24GB memory and 81.4
TFLOPS for training and testing. We reported three metrics:
Dice Coefficient Score (DSC), Intersection over Union (IoU)
scores, and Hausdorff Distance (HD).

B. Implementation Details

We implement the Dice score differently: it operates on logits
before argmax to maximize confidence scores of predicted
pixels per class. At the same time, IoU compares segmentation
accuracy between ground truth G and prediction P after
argmax predictions. The loss is the reverse of those metrics:

Fig. 4. 3D visualization of ablation study on rotatory attention

Dice Loss = 1− 1

c

∑
c

2
∑

ij P
c
ij ×Gc

ij∑
ij P

c
ij +

∑
ij G

c
ij + ϵ

∀c ̸= 0

IoU Loss = 1−
∑

ij Pij ×Gij∑
ij(Pij +Gij − Pij ×Gij)

The exclusion of c ̸= 0 ensures the avoidance of unreal
DSC and IoU scores from dominant background pixels. Our
combined loss function is defined as:

L = α× IoU Loss + (1− α)× Dice Loss

In our implementation, we set α to 0.6 because we observed
that the IoU loss consistently exceeds the Dice loss. Therefore,
we opt to increase the penalty on the model.

C. Results and Discussion

The results are summarized in Table I. The VHSCDD*
dataset contains images of size 512x512, while VHSCDD
and other datasets have images of size 256x256. Our model’s
lightweight nature is due to having only four transformer
layers. The robustness of rotatory attention allows encoded
vectorized patches to be effectively transformed in the semantic
space, reducing the need for numerous transformer layers.
As shown in Figure 3, our network demonstrates the fastest
convergence time when applied to cardiac data, thanks to robust
long-range interslice connectivity. However, despite RotCAtt-
TransUNet++ outperforming other methods across various
datasets and metrics, it is less effective on the Synapses dataset.



Fig. 5. Segmentation comparison between our method with different ones

After dataset analysis, we conclude this may be due to the
discontinuous nature of organ structures in this dataset, where
the model struggles to aggregate adjacent slice information
or the necessary information is distant (exceeds batch size)
along the z-axis. Increasing the number of transformer layers,
as in TransUNet, would provide only marginal improvement
while significantly increasing model parameters/complexity.
Therefore, this area remains open for future improvement.
We conducted an ablation study on the VHSCDD dataset to
compare results with and without the attention mechanism. As
shown in Table II, the DSC and IoU scores drop significantly,
and in Figure 4, the ”spraying phenomenon” occurs when no ro-
tatory attention is applied. Our attention map analysis revealed
that non-cardiac regions outside the heart exhibit high similarity
to patches of the myocardium. Additionally, as illustrated in
Figure 5, our method achieves near-perfect segmentation across
all classes. In contrast, TransUNet (a Transformer-based ap-
proach) and UNet++ Attention (a CNN-based approach) did not
perform as well. The ”spraying phenomenon” is also noticeable
in the TransUNet segmentation results.

V. CONCLUSION AND IMPLICATION

In conclusion, Transformer-based methods excel in self-
attention, while CNN-based methods are strong in localization.
Our study introduces RotCAtt-TransUNet++, featuring nested
skip connections for multiscale feature extraction in the en-
coder, followed by transformer layers, and rotatory attention
blocks. This architecture enhances image representation and
segmentation accuracy, particularly in complex cardiac datasets.
Experimental results show near-perfect annotation of critical

structures like coronary arteries and myocardium, with the
ablation study confirming the effectiveness of rotatory attention.
Future research aims to refine the architecture, and integrate
advanced techniques to improve segmentation efficiency and
clinical outcomes in cardiovascular diseases.
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