import numpy as np
import torch.nn as nn
class ReconBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, scale_factor):
super().__init__()
if kernel_size == 3: padding = 1
else: padding = 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding)
self.batch_norm = nn.BatchNorm2d(out_channels)
self.act = nn.ReLU(inplace=True)
self.scale_factor = scale_factor
def forward(self, x):
B, n_patch, hidden = x.size()
h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch))
x = x.permute(0, 2, 1)
x = x.contiguous().view(B, hidden, h, w)
x = nn.Upsample(scale_factor=self.scale_factor)(x)
out = self.conv(x)
out = self.batch_norm(out)
out = self.act(out)
return out
class Reconstruction(nn.Module):
def __init__(self, config):
super().__init__()
df = config.df
p = config.p
self.reconstruct_1 = ReconBlock(df[0], df[0], kernel_size=1, scale_factor=(p[0], p[0]))
self.reconstruct_2 = ReconBlock(df[1], df[1], kernel_size=1, scale_factor=(p[1], p[1]))
self.reconstruct_3 = ReconBlock(df[2], df[2], kernel_size=1, scale_factor=(p[2], p[2]))
def forward(self, f1, f2, f3):
o1 = self.reconstruct_1(f1)
o2 = self.reconstruct_2(f2)
o3 = self.reconstruct_3(f3)
return o1, o2, o3