|
a |
|
b/train.py |
|
|
1 |
import argparse |
|
|
2 |
import os |
|
|
3 |
from glob import glob |
|
|
4 |
import pandas as pd |
|
|
5 |
import yaml |
|
|
6 |
from utils import str2bool, write_csv |
|
|
7 |
from collections import OrderedDict |
|
|
8 |
from sklearn.model_selection import train_test_split |
|
|
9 |
|
|
|
10 |
from trainer import trainer, validate |
|
|
11 |
from dataset import CustomDataset |
|
|
12 |
import torch |
|
|
13 |
from torch.utils.data import DataLoader |
|
|
14 |
import torch.optim as optim |
|
|
15 |
from torch.nn.modules.loss import CrossEntropyLoss |
|
|
16 |
from metrics import Dice, IOU, HD |
|
|
17 |
|
|
|
18 |
from networks.RotCAtt_TransUNet_plusplus.RotCAtt_TransUNet_plusplus import RotCAtt_TransUNet_plusplus |
|
|
19 |
from networks.RotCAtt_TransUNet_plusplus.config import get_config as rot_config |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def parse_args(): |
|
|
24 |
|
|
|
25 |
# Training pipeline |
|
|
26 |
parser = argparse.ArgumentParser() |
|
|
27 |
parser.add_argument('--name', default=None, help='model name') |
|
|
28 |
parser.add_argument('--pretrained', default=False, |
|
|
29 |
help='pretrained or not (default: False)') |
|
|
30 |
parser.add_argument('--epochs', default=600, type=int, metavar='N', |
|
|
31 |
help='number of epochs for training') |
|
|
32 |
parser.add_argument('--batch_size', default=6, type=int, metavar='N', |
|
|
33 |
help='mini-batch size') |
|
|
34 |
parser.add_argument('--seed', type=int, default=1234, help='random seed') |
|
|
35 |
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu') |
|
|
36 |
parser.add_argument('--num_workers', default=3, type=int) |
|
|
37 |
parser.add_argument('--val_mode', default=True, type=str2bool) |
|
|
38 |
|
|
|
39 |
# Network |
|
|
40 |
parser.add_argument('--network', default='RotCAtt_TransUNet_plusplus') |
|
|
41 |
parser.add_argument('--input_channels', default=1, type=int, |
|
|
42 |
help='input channels') |
|
|
43 |
parser.add_argument('--patch_size', default=16, type=int, |
|
|
44 |
help='input patch size') |
|
|
45 |
parser.add_argument('--num_classes', default=12, type=int, |
|
|
46 |
help='number of classes') |
|
|
47 |
parser.add_argument('--img_size', default=512, type=int, |
|
|
48 |
help='input image img_size') |
|
|
49 |
|
|
|
50 |
# Dataset |
|
|
51 |
parser.add_argument('--dataset', default='VHSCDD', help='dataset name') |
|
|
52 |
parser.add_argument('--ext', default='.npy', help='file extension') |
|
|
53 |
parser.add_argument('--range', default=None, type=int, help='dataset size') |
|
|
54 |
|
|
|
55 |
# Criterion |
|
|
56 |
parser.add_argument('--loss', default='Dice Iou Cross entropy') |
|
|
57 |
|
|
|
58 |
# Optimizer |
|
|
59 |
parser.add_argument('--optimizer', default='SGD', choices=['Adam', 'SGD'], |
|
|
60 |
help='optimizer: ' + ' | '.join(['Adam', 'SGD']) |
|
|
61 |
+ 'default (Adam)') |
|
|
62 |
parser.add_argument('--base_lr', '--learning_rate', default=0.01, type=float, |
|
|
63 |
metavar='LR', help='initial learning rate') |
|
|
64 |
parser.add_argument('--momentum', default=0.9, type=float, |
|
|
65 |
help='momentum') |
|
|
66 |
parser.add_argument('--weight_decay', default=0.0001, type=float, |
|
|
67 |
help='weight decay') |
|
|
68 |
parser.add_argument('--nesterov', default=False, type=str2bool, |
|
|
69 |
help='nesterov') |
|
|
70 |
|
|
|
71 |
# scheduler |
|
|
72 |
parser.add_argument('--scheduler', default='CosineAnnealingLR', |
|
|
73 |
choices=['CosineAnnealingLR', 'ReduceLROnPlateau', |
|
|
74 |
'MultiStepLR', 'ConstantLR']) |
|
|
75 |
parser.add_argument('--min_lr', default=1e-5, type=float, |
|
|
76 |
help='minimum learning rate') |
|
|
77 |
parser.add_argument('--factor', default=0.1, type=float) |
|
|
78 |
parser.add_argument('--patience', default=2, type=int) |
|
|
79 |
parser.add_argument('--milestones', default='1,2', type=str) |
|
|
80 |
parser.add_argument('--gamma', default=2/3, type=float) |
|
|
81 |
parser.add_argument('--early_stopping', default=-1, type=int, |
|
|
82 |
metavar='N', help='early stopping (default: -1)') |
|
|
83 |
|
|
|
84 |
return parser.parse_args() |
|
|
85 |
|
|
|
86 |
def output_config(config): |
|
|
87 |
print('-' * 20) |
|
|
88 |
for key in config: |
|
|
89 |
print(f'{key}: {config[key]}') |
|
|
90 |
print('-' * 20) |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
def loading_2D_data(config): |
|
|
94 |
image_paths = glob(f"data/{config.dataset}/images/*.npy") |
|
|
95 |
label_paths = glob(f"data/{config.dataset}/labels/*.npy") |
|
|
96 |
|
|
|
97 |
if config.range != None: |
|
|
98 |
image_paths = image_paths[:config.range] |
|
|
99 |
label_paths = label_paths[:config.range] |
|
|
100 |
|
|
|
101 |
train_image_paths, val_image_paths, train_label_paths, val_label_paths = train_test_split(image_paths, label_paths, test_size=0.2, random_state=41) |
|
|
102 |
train_ds = CustomDataset(config.num_classes, train_image_paths, train_label_paths, img_size=config.img_size) |
|
|
103 |
val_ds = CustomDataset(config.num_classes, val_image_paths, val_label_paths, img_size=config.img_size) |
|
|
104 |
|
|
|
105 |
train_loader = DataLoader( |
|
|
106 |
train_ds, |
|
|
107 |
batch_size=config.batch_size, |
|
|
108 |
shuffle=False, |
|
|
109 |
num_workers=config.num_workers, |
|
|
110 |
drop_last=False, |
|
|
111 |
) |
|
|
112 |
|
|
|
113 |
val_loader = DataLoader( |
|
|
114 |
val_ds, |
|
|
115 |
batch_size=config.batch_size, |
|
|
116 |
shuffle=False, |
|
|
117 |
num_workers=config.num_workers, |
|
|
118 |
drop_last=False, |
|
|
119 |
) |
|
|
120 |
return train_loader, val_loader |
|
|
121 |
|
|
|
122 |
|
|
|
123 |
def load_pretrained_model(model_path): |
|
|
124 |
if os.path.exists(model_path): |
|
|
125 |
model = torch.load(model_path) |
|
|
126 |
return model |
|
|
127 |
else: |
|
|
128 |
print("No pretrained exists") |
|
|
129 |
exit() |
|
|
130 |
|
|
|
131 |
|
|
|
132 |
def load_network(config): |
|
|
133 |
if config.network == 'RotCAtt_TransUNet_plusplus': |
|
|
134 |
model_config = rot_config() |
|
|
135 |
model_config.img_size = config.img_size |
|
|
136 |
model_config.num_classes = config.num_classes |
|
|
137 |
model = RotCAtt_TransUNet_plusplus(config=model_config).cuda() |
|
|
138 |
|
|
|
139 |
else: |
|
|
140 |
print("Add the custom network to the training pipeline please") |
|
|
141 |
exit(1) |
|
|
142 |
|
|
|
143 |
return model |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
def rlog(value): |
|
|
147 |
return round(value, 3) |
|
|
148 |
|
|
|
149 |
def train(config): |
|
|
150 |
config_dict = vars(config) |
|
|
151 |
print(config.network) |
|
|
152 |
|
|
|
153 |
# Config name |
|
|
154 |
config.name = f"{config.dataset}_{config.network}_bs{config.batch_size}_ps{config.patch_size}_epo{config.epochs}_hw{config.img_size}" |
|
|
155 |
|
|
|
156 |
# Model |
|
|
157 |
print(f"=> Initialize model: {config.network}") |
|
|
158 |
if config.pretrained == False: |
|
|
159 |
model = load_network(config) |
|
|
160 |
output_config(config_dict) |
|
|
161 |
print(f"=> Initialize output: {config.name}") |
|
|
162 |
model_path = f"outputs/{config.name}" |
|
|
163 |
if not os.path.exists(model_path): |
|
|
164 |
os.makedirs(model_path) |
|
|
165 |
with open(f"{model_path}/config.yml", "w") as f: |
|
|
166 |
yaml.dump(config_dict, f) |
|
|
167 |
|
|
|
168 |
else: model = load_pretrained_model(f'outputs/{config.name}/model.pth') |
|
|
169 |
|
|
|
170 |
# Data loading |
|
|
171 |
if config.dataset == 'VHSCDD': config.dataset += f'_{config.img_size}' |
|
|
172 |
train_loader, val_loader = loading_2D_data(config) |
|
|
173 |
|
|
|
174 |
# logging |
|
|
175 |
log = OrderedDict([ |
|
|
176 |
('epoch', []), # 0 |
|
|
177 |
('lr', []), # 1 |
|
|
178 |
|
|
|
179 |
('Train loss', []), # 2 |
|
|
180 |
('Train ce loss', []), # 3 |
|
|
181 |
('Train dice score', []), # 4 |
|
|
182 |
('Train dice loss', []), # 5 |
|
|
183 |
('Train iou score', []), # 6 |
|
|
184 |
('Train iou loss', []), # 7 |
|
|
185 |
('Train hausdorff', []), # 8 |
|
|
186 |
|
|
|
187 |
('Val loss', []), # 8 |
|
|
188 |
('Val ce loss', []), # 9 |
|
|
189 |
('Val dice score', []), # 10 |
|
|
190 |
('Val dice loss', []), # 11 |
|
|
191 |
('Val iou score', []), # 12 |
|
|
192 |
('Val iou loss', []), # 13 |
|
|
193 |
('Val hausdorff', []), # 14 |
|
|
194 |
]) |
|
|
195 |
|
|
|
196 |
if config.pretrained: |
|
|
197 |
pre_log = pd.read_csv(f'outputs/{config.name}/epo_log.csv') |
|
|
198 |
print(pre_log) |
|
|
199 |
log = OrderedDict((key, []) for key in pre_log.keys()) |
|
|
200 |
for column in pre_log.columns: |
|
|
201 |
log[column] = pre_log[column].tolist() |
|
|
202 |
|
|
|
203 |
# Optimizer |
|
|
204 |
params = filter(lambda p: p.requires_grad, model.parameters()) |
|
|
205 |
if config.optimizer == 'Adam': |
|
|
206 |
optimizer = optim.Adam(params, lr=config.base_lr, weight_decay=config.weight_decay) |
|
|
207 |
elif config.optimizer == 'SGD': |
|
|
208 |
optimizer = optim.SGD(params, lr=config.base_lr, momentum=config.momentum, |
|
|
209 |
nesterov=config.nesterov, weight_decay=config.weight_decay) |
|
|
210 |
|
|
|
211 |
# Criterion |
|
|
212 |
ce = CrossEntropyLoss() |
|
|
213 |
dice = Dice(config.num_classes) |
|
|
214 |
iou = IOU(config.num_classes) |
|
|
215 |
hd = HD() |
|
|
216 |
|
|
|
217 |
# Training loop |
|
|
218 |
best_train_iou = 0 |
|
|
219 |
best_train_dice_score = 0 |
|
|
220 |
best_val_iou = 0 |
|
|
221 |
best_val_dice_score = 0 |
|
|
222 |
|
|
|
223 |
fieldnames = ['CE Loss', 'Dice Score', 'Dice Loss', 'IoU Score', 'IoU Loss', 'HausDorff Distance', 'Total Loss'] |
|
|
224 |
iter_log_file = f'outputs/{config.name}/iter_log.csv' |
|
|
225 |
if not os.path.exists(iter_log_file): |
|
|
226 |
write_csv(iter_log_file, fieldnames) |
|
|
227 |
|
|
|
228 |
for epoch in range(config.epochs): |
|
|
229 |
print(f"Epoch: {epoch+1}/{config.epochs}") |
|
|
230 |
train_log = trainer(config, train_loader, optimizer, model, ce, dice, iou, hd) |
|
|
231 |
if config.val_mode: val_log = validate(config, val_loader, model, ce, dice, iou, hd) |
|
|
232 |
|
|
|
233 |
print(f"Train loss: {rlog(train_log['loss'])} - Train ce loss: {rlog(train_log['ce_loss'])} - Train dice score: {rlog(train_log['dice_score'])} - Train dice loss: {rlog(train_log['dice_loss'])} - Train iou Score: {rlog(train_log['iou_score'])} - Train iou loss: {rlog(train_log['iou_loss'])} - Train hausdorff: {rlog(train_log['hausdorff'])}") |
|
|
234 |
if config.val_mode: print(f"Val loss: {rlog(val_log['loss'])} - Val ce loss: {rlog(val_log['ce_loss'])} - Val dice score: {rlog(val_log['dice_score'])} - Val dice loss: {rlog(val_log['dice_loss'])} - Val iou Score: {rlog(val_log['iou_score'])} - Val iou loss: {rlog(val_log['iou_loss'])} - Val hausdorff: {rlog(val_log['hausdorff'])}") |
|
|
235 |
|
|
|
236 |
log['epoch'].append(epoch) |
|
|
237 |
log['lr'].append(config.base_lr) |
|
|
238 |
|
|
|
239 |
log['Train loss'].append(train_log['loss']) |
|
|
240 |
log['Train ce loss'].append(train_log['ce_loss']) |
|
|
241 |
log['Train dice score'].append(train_log['dice_score']) |
|
|
242 |
log['Train dice loss'].append(train_log['dice_loss']) |
|
|
243 |
log['Train iou score'].append(train_log['iou_score']) |
|
|
244 |
log['Train iou loss'].append(train_log['iou_loss']) |
|
|
245 |
log['Train hausdorff'].append(train_log['hausdorff']) |
|
|
246 |
|
|
|
247 |
if config.val_mode: |
|
|
248 |
log['Val loss'].append(val_log['loss']) |
|
|
249 |
log['Val ce loss'].append(val_log['ce_loss']) |
|
|
250 |
log['Val dice score'].append(val_log['dice_score']) |
|
|
251 |
log['Val dice loss'].append(val_log['dice_loss']) |
|
|
252 |
log['Val iou score'].append(val_log['iou_score']) |
|
|
253 |
log['Val iou loss'].append(val_log['iou_loss']) |
|
|
254 |
log['Val hausdorff'].append(val_log['hausdorff']) |
|
|
255 |
|
|
|
256 |
else: |
|
|
257 |
log['Val loss'].append(None) |
|
|
258 |
log['Val ce loss'].append(None) |
|
|
259 |
log['Val dice score'].append(None) |
|
|
260 |
log['Val dice loss'].append(None) |
|
|
261 |
log['Val iou score'].append(None) |
|
|
262 |
log['Val iou loss'].append(None) |
|
|
263 |
log['Val hausdorff'].append(None) |
|
|
264 |
|
|
|
265 |
|
|
|
266 |
pd.DataFrame(log).to_csv(f'outputs/{config.name}/epo_log.csv', index=False) |
|
|
267 |
|
|
|
268 |
# Save best model |
|
|
269 |
if train_log['iou_score'] > best_train_iou and train_log['dice_score'] > best_train_dice_score and val_log['iou_score'] > best_val_iou and val_log['dice_score'] > best_val_dice_score: |
|
|
270 |
|
|
|
271 |
best_train_iou = train_log['iou_score'] |
|
|
272 |
best_train_dice_score = train_log['dice_score'] |
|
|
273 |
best_val_iou = val_log['iou_score'] |
|
|
274 |
best_val_dice_score = val_log['dice_score'] |
|
|
275 |
|
|
|
276 |
torch.save(model, f"outputs/{config.name}/model.pth") |
|
|
277 |
|
|
|
278 |
if (epoch+1) % 1 == 0: |
|
|
279 |
print(f'BEST TRAIN DICE: {best_train_dice_score} - BEST TRAIN IOU: {best_train_iou} - BEST VAL DICE SCORE: {best_val_dice_score} - BEST VAL IOU: {best_val_iou}') |
|
|
280 |
|
|
|
281 |
if __name__ == '__main__': |
|
|
282 |
config = parse_args() |
|
|
283 |
train(config) |