[5b5f7c]: / ecgtoBR / utils.py

Download this file

169 lines (130 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import torch.nn.functional as functional
import numpy as np
import pandas as pd
import scipy.signal
from sklearn.preprocessing import MinMaxScaler, StandardScaler
def testDataEval(model, loader, criterion):
"""Test model on dataloader
Arguments:
model {torch object} -- Model
loader {torch object} -- Data Loader
criterion {torch object} -- Loss Function
Returns:
float -- total loss
"""
model.eval()
with torch.no_grad():
total_loss = 0
for (x,y) in loader:
ecg,BR = x.cuda(),y.cuda()
BR_pred = model(ecg)
loss = criterion(BR_pred, BR)
total_loss += loss
return total_loss
def smooth(signal,window_len=50):
"""Compute moving average of specified window length
Arguments:
signal {ndarray} -- signal to smooth
Keyword Arguments:
window_len {int} -- size of window over which average is to be computed (default: {50})
Returns:
ndarray -- smoothed signal
"""
y = pd.DataFrame(signal).rolling(window_len,center = True, min_periods = 1).mean().values.reshape((-1,))
return y
def findValleys(signal, prominence = 0.07):
"""Find valleys of distance transform to estimate breath positions
Arguments:
signal {ndarray} -- transform to get breath positions
Keyword Arguments:
prominence {int} -- threshold prominence to detect peaks (default: {0.07})
Returns:
ndarray -- valley locations in signal
"""
smoothened = smooth(-1*signal)
valley_loc = scipy.signal.find_peaks(smoothened, prominence= prominence)[0]
return valley_loc
def getBR(signal, model):
""" Get Breathing Rate after passing ECG through Model
Arguments:
signal {torch tensor} -- input ECG signal
model -- ECG to BR model
Returns:
ndarray -- position of predicted valley and corresponding predicted transform
"""
model.eval()
with torch.no_grad():
transformPredicted = model(signal)
transformPredicted = transformPredicted.cpu().numpy().reshape((-1,))
valleys = findValleys(transformPredicted)
return valleys, transformPredicted
def save_model(exp_dir, epoch, model, optimizer,best_dev_loss):
""" save checkpoint of model
Arguments:
exp_dir {string} -- Path to checkpoint
epoch {int} -- epoch at which model is checkpointed
model -- model state to be checkpointed
optimizer {torch optimizer object} -- optimizer state of model to be checkpoint
best_dev_loss {float} -- loss of model to be checkpointed
"""
out = torch.save(
{
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_dev_loss': best_dev_loss,
'exp_dir':exp_dir
},
f=exp_dir + '/best_model.pt'
)
def dist_transform(signal, ann):
""" Compute distance transform of Respiration signaal based on breath positions
Arguments:
signal{ndarray} -- The ECG signal
ann{ndarray} -- The ground truth R-Peaks
Returns:
ndarray -- transformed signal
"""
length = len(signal)
transform = []
sample = 0
if len(ann) == 0:
return None
if len(ann) ==1:
for i in range(length):
transform.append(abs(i-ann[sample]))
else:
for i in range(length):
if sample+1 == len(ann):
for j in range(i,length):
transform.append(abs(j - nextAnn))
break
prevAnn = ann[sample]
nextAnn = ann[sample+1]
middle = int((prevAnn + nextAnn )/2)
if i < middle:
transform.append(abs(i - prevAnn))
elif i>= middle:
transform.append(abs(i- nextAnn))
if i == nextAnn:
sample+=1
transform = np.array(transform)
minmaxScaler = MinMaxScaler()
transform = minmaxScaler.fit_transform(transform.reshape((-1,1)))
return transform
def getWindow(signal,ann, windows = 10, freq = 125, overlap = 0.5):
"""Generate ECG and Respiration signals with annotations of specified window length
Arguments:
signal {2-D array} -- array containing ecg at index 0 and resp at index 1
ann {list} -- annotations within specified window
Keyword Arguments:
windows {int} -- size of window in seconds (default: {5})
freq {int} -- sampling rate in Hz (default: {125})
overlap {float} -- percentage of overlap between windows (default: {0.5})
Yields:
tuple -- signals and correspoinding annotations
"""
for start in range(0,len(signal),int((1-overlap)*freq*windows)):
yield (signal[start: start + windows*freq, :],[x-start for x in ann if x >= start and x < start+windows*freq])