import torch
import torch.nn as nn
import torch.nn.functional as functional
import numpy as np
import pandas as pd
import scipy.signal
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from tqdm import tqdm
import wfdb as wf
def dist_transform(window_size, ann):
""" Compute distance transform of Respiration signaal based on breath positions
Arguments:
window_size{int} -- Window Length
ann{ndarray} -- The ground truth R-Peaks
Returns:
ndarray -- transformed signal
"""
length = window_size
transform = []
sample = 0
if len(ann) == 0:
return None
if len(ann) ==1:
for i in range(window_size):
transform.append(abs(i-ann[sample]))
else:
for i in range(window_size):
if sample+1 == len(ann):
for j in range(i,window_size):
transform.append(abs(j - nextAnn))
break
prevAnn = ann[sample]
nextAnn = ann[sample+1]
middle = int((prevAnn + nextAnn )/2)
if i < middle:
transform.append(abs(i - prevAnn))
elif i>= middle:
transform.append(abs(i- nextAnn))
if i == nextAnn:
sample+=1
transform = np.array(transform)
minmaxScaler = MinMaxScaler()
transform = minmaxScaler.fit_transform(transform.reshape((-1,1)))
return transform
def getWindow(all_paths):
""" Windowing the ECG and its corresponding Distance Transform
Arguments:
all_paths{list} -- Paths to all the ECG files
Returns:
windowed_data{list(ndarray)},windowed_beats{list(ndarray)} -- Returns winodwed ECG and windowed ground truth
"""
windowed_data = []
windowed_beats = []
count = 0
count1 = 0
for path in tqdm(all_paths):
ann = wf.rdann(path,'atr')
record = wf.io.rdrecord(path)
beats = ann.sample
labels = ann.symbol
len_beats = len(beats)
data = record.p_signal[:,0]
ini_index = 0
final_index = 0
### Checking for Beat annotations
non_required_labels = ['[','!',']','x','(',')','p','t','u','`',"'",'^','|','~','+','s','T','*','D','=','"','@']
for window in range(len(data) // 3600):
count += 1
for r_peak in range(ini_index,len_beats):
if beats[r_peak] > (window+1) * 3600:
final_index = r_peak
#print('FInal index:',final_index)
break
record_anns = list(beats[ini_index: final_index])
record_labs = labels[ini_index: final_index]
to_del_index = []
for actual_lab in range(len(record_labs)):
for lab in range(len(non_required_labels)):
if(record_labs[actual_lab] == non_required_labels[lab]):
to_del_index.append(actual_lab)
for indice in range(len(to_del_index)-1,-1,-1):
del record_anns[to_del_index[indice]]
windowed_beats.append(np.asarray(record_anns) - (window) * 3600)
windowed_data.append(data[window * 3600 : (window+1) * 3600])
ini_index = final_index
return windowed_data,windowed_beats
def testDataEval(model, loader, criterion):
"""Test model on dataloader
Arguments:
model {torch object} -- Model
loader {torch object} -- Data Loader
criterion {torch object} -- Loss Function
Returns:
float -- total loss
"""
model.eval()
with torch.no_grad():
total_loss = 0
for (x,y) in loader:
ecg,BR = x.unsqueeze(1).cuda(),y.unsqueeze(1).cuda()
BR_pred = model(ecg)
loss = criterion(BR_pred, BR)
total_loss += loss
return total_loss
def save_model(exp_dir, epoch, model, optimizer,best_dev_loss):
""" save checkpoint of model
Arguments:
exp_dir {string} -- Path to checkpoint
epoch {int} -- epoch at which model is checkpointed
model -- model state to be checkpointed
optimizer {torch optimizer object} -- optimizer state of model to be checkpoint
best_dev_loss {float} -- loss of model to be checkpointed
"""
out = torch.save(
{
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_dev_loss': best_dev_loss,
'exp_dir':exp_dir
},
f=exp_dir + '/best_model.pt'
)
def findValleys(signal, prominence = 10, is_smooth = True , distance = 10):
""" Return prominent peaks and valleys based on scipy's find_peaks function """
smoothened = smooth(-1*signal)
valley_loc = scipy.signal.find_peaks(smoothened, prominence= 0.07)[0]
return valley_loc