|
a |
|
b/ecgtoBR/utils.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.nn.functional as functional |
|
|
4 |
|
|
|
5 |
import numpy as np |
|
|
6 |
import pandas as pd |
|
|
7 |
import scipy.signal |
|
|
8 |
from sklearn.preprocessing import MinMaxScaler, StandardScaler |
|
|
9 |
|
|
|
10 |
def testDataEval(model, loader, criterion): |
|
|
11 |
|
|
|
12 |
"""Test model on dataloader |
|
|
13 |
|
|
|
14 |
Arguments: |
|
|
15 |
model {torch object} -- Model |
|
|
16 |
loader {torch object} -- Data Loader |
|
|
17 |
criterion {torch object} -- Loss Function |
|
|
18 |
Returns: |
|
|
19 |
float -- total loss |
|
|
20 |
""" |
|
|
21 |
|
|
|
22 |
model.eval() |
|
|
23 |
|
|
|
24 |
with torch.no_grad(): |
|
|
25 |
|
|
|
26 |
total_loss = 0 |
|
|
27 |
|
|
|
28 |
for (x,y) in loader: |
|
|
29 |
|
|
|
30 |
ecg,BR = x.cuda(),y.cuda() |
|
|
31 |
BR_pred = model(ecg) |
|
|
32 |
loss = criterion(BR_pred, BR) |
|
|
33 |
total_loss += loss |
|
|
34 |
|
|
|
35 |
return total_loss |
|
|
36 |
|
|
|
37 |
def smooth(signal,window_len=50): |
|
|
38 |
"""Compute moving average of specified window length |
|
|
39 |
|
|
|
40 |
Arguments: |
|
|
41 |
signal {ndarray} -- signal to smooth |
|
|
42 |
|
|
|
43 |
Keyword Arguments: |
|
|
44 |
window_len {int} -- size of window over which average is to be computed (default: {50}) |
|
|
45 |
|
|
|
46 |
Returns: |
|
|
47 |
ndarray -- smoothed signal |
|
|
48 |
""" |
|
|
49 |
|
|
|
50 |
y = pd.DataFrame(signal).rolling(window_len,center = True, min_periods = 1).mean().values.reshape((-1,)) |
|
|
51 |
return y |
|
|
52 |
|
|
|
53 |
def findValleys(signal, prominence = 0.07): |
|
|
54 |
"""Find valleys of distance transform to estimate breath positions |
|
|
55 |
Arguments: |
|
|
56 |
signal {ndarray} -- transform to get breath positions |
|
|
57 |
|
|
|
58 |
Keyword Arguments: |
|
|
59 |
prominence {int} -- threshold prominence to detect peaks (default: {0.07}) |
|
|
60 |
|
|
|
61 |
Returns: |
|
|
62 |
ndarray -- valley locations in signal |
|
|
63 |
""" |
|
|
64 |
smoothened = smooth(-1*signal) |
|
|
65 |
valley_loc = scipy.signal.find_peaks(smoothened, prominence= prominence)[0] |
|
|
66 |
|
|
|
67 |
return valley_loc |
|
|
68 |
|
|
|
69 |
def getBR(signal, model): |
|
|
70 |
""" Get Breathing Rate after passing ECG through Model |
|
|
71 |
|
|
|
72 |
Arguments: |
|
|
73 |
signal {torch tensor} -- input ECG signal |
|
|
74 |
model -- ECG to BR model |
|
|
75 |
|
|
|
76 |
Returns: |
|
|
77 |
ndarray -- position of predicted valley and corresponding predicted transform |
|
|
78 |
""" |
|
|
79 |
|
|
|
80 |
model.eval() |
|
|
81 |
with torch.no_grad(): |
|
|
82 |
transformPredicted = model(signal) |
|
|
83 |
transformPredicted = transformPredicted.cpu().numpy().reshape((-1,)) |
|
|
84 |
valleys = findValleys(transformPredicted) |
|
|
85 |
return valleys, transformPredicted |
|
|
86 |
|
|
|
87 |
def save_model(exp_dir, epoch, model, optimizer,best_dev_loss): |
|
|
88 |
""" save checkpoint of model |
|
|
89 |
|
|
|
90 |
Arguments: |
|
|
91 |
exp_dir {string} -- Path to checkpoint |
|
|
92 |
epoch {int} -- epoch at which model is checkpointed |
|
|
93 |
model -- model state to be checkpointed |
|
|
94 |
optimizer {torch optimizer object} -- optimizer state of model to be checkpoint |
|
|
95 |
best_dev_loss {float} -- loss of model to be checkpointed |
|
|
96 |
""" |
|
|
97 |
out = torch.save( |
|
|
98 |
{ |
|
|
99 |
'epoch': epoch, |
|
|
100 |
'model': model.state_dict(), |
|
|
101 |
'optimizer': optimizer.state_dict(), |
|
|
102 |
'best_dev_loss': best_dev_loss, |
|
|
103 |
'exp_dir':exp_dir |
|
|
104 |
}, |
|
|
105 |
f=exp_dir + '/best_model.pt' |
|
|
106 |
) |
|
|
107 |
|
|
|
108 |
def dist_transform(signal, ann): |
|
|
109 |
|
|
|
110 |
""" Compute distance transform of Respiration signaal based on breath positions |
|
|
111 |
Arguments: |
|
|
112 |
signal{ndarray} -- The ECG signal |
|
|
113 |
ann{ndarray} -- The ground truth R-Peaks |
|
|
114 |
Returns: |
|
|
115 |
ndarray -- transformed signal |
|
|
116 |
""" |
|
|
117 |
|
|
|
118 |
length = len(signal) |
|
|
119 |
transform = [] |
|
|
120 |
|
|
|
121 |
sample = 0 |
|
|
122 |
if len(ann) == 0: |
|
|
123 |
return None |
|
|
124 |
if len(ann) ==1: |
|
|
125 |
for i in range(length): |
|
|
126 |
transform.append(abs(i-ann[sample])) |
|
|
127 |
else: |
|
|
128 |
for i in range(length): |
|
|
129 |
|
|
|
130 |
if sample+1 == len(ann): |
|
|
131 |
for j in range(i,length): |
|
|
132 |
|
|
|
133 |
transform.append(abs(j - nextAnn)) |
|
|
134 |
break |
|
|
135 |
prevAnn = ann[sample] |
|
|
136 |
nextAnn = ann[sample+1] |
|
|
137 |
middle = int((prevAnn + nextAnn )/2) |
|
|
138 |
if i < middle: |
|
|
139 |
transform.append(abs(i - prevAnn)) |
|
|
140 |
elif i>= middle: |
|
|
141 |
transform.append(abs(i- nextAnn)) |
|
|
142 |
if i == nextAnn: |
|
|
143 |
sample+=1 |
|
|
144 |
|
|
|
145 |
transform = np.array(transform) |
|
|
146 |
minmaxScaler = MinMaxScaler() |
|
|
147 |
transform = minmaxScaler.fit_transform(transform.reshape((-1,1))) |
|
|
148 |
return transform |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
def getWindow(signal,ann, windows = 10, freq = 125, overlap = 0.5): |
|
|
152 |
"""Generate ECG and Respiration signals with annotations of specified window length |
|
|
153 |
|
|
|
154 |
Arguments: |
|
|
155 |
signal {2-D array} -- array containing ecg at index 0 and resp at index 1 |
|
|
156 |
ann {list} -- annotations within specified window |
|
|
157 |
|
|
|
158 |
Keyword Arguments: |
|
|
159 |
windows {int} -- size of window in seconds (default: {5}) |
|
|
160 |
freq {int} -- sampling rate in Hz (default: {125}) |
|
|
161 |
overlap {float} -- percentage of overlap between windows (default: {0.5}) |
|
|
162 |
|
|
|
163 |
Yields: |
|
|
164 |
tuple -- signals and correspoinding annotations |
|
|
165 |
""" |
|
|
166 |
|
|
|
167 |
for start in range(0,len(signal),int((1-overlap)*freq*windows)): |
|
|
168 |
yield (signal[start: start + windows*freq, :],[x-start for x in ann if x >= start and x < start+windows*freq]) |