|
a |
|
b/ecgtoBR/create_dataset.py |
|
|
1 |
import numpy as np |
|
|
2 |
import os |
|
|
3 |
import pandas as pd |
|
|
4 |
import wfdb as wf |
|
|
5 |
import argparse |
|
|
6 |
from glob import glob |
|
|
7 |
from tqdm import tqdm |
|
|
8 |
from scipy.signal import resample |
|
|
9 |
from sklearn.preprocessing import StandardScaler, MinMaxScaler |
|
|
10 |
from sklearn.model_selection import train_test_split |
|
|
11 |
import wget |
|
|
12 |
|
|
|
13 |
import torch |
|
|
14 |
|
|
|
15 |
from utils import dist_transform,getWindow |
|
|
16 |
|
|
|
17 |
def data_preprocess(args): |
|
|
18 |
|
|
|
19 |
""" Preprocess data and create train - validate split |
|
|
20 |
""" |
|
|
21 |
|
|
|
22 |
dat_path = os.path.join(args.data_path,'*.dat') |
|
|
23 |
paths = glob(dat_path) |
|
|
24 |
|
|
|
25 |
paths= sorted([path[:-4] for path in paths if path[-5] != "n"] ) |
|
|
26 |
|
|
|
27 |
fs = args.sampling_freq |
|
|
28 |
fs_upsample = args.upsample_freq |
|
|
29 |
WINDOWS = args.window_length |
|
|
30 |
|
|
|
31 |
ecgSignals = [] |
|
|
32 |
BRSignals = [] |
|
|
33 |
BRAnn1 = [] |
|
|
34 |
BRAnn2 = [] |
|
|
35 |
|
|
|
36 |
for path in tqdm(paths): |
|
|
37 |
|
|
|
38 |
ann = wf.rdann(path,'breath') |
|
|
39 |
samples = np.array(ann.sample) |
|
|
40 |
aux_note = np.array(ann.aux_note) |
|
|
41 |
ann1 = samples[(aux_note == "ann1")] |
|
|
42 |
ann2 = samples[(aux_note == "ann2")] |
|
|
43 |
record = wf.io.rdrecord(path) |
|
|
44 |
|
|
|
45 |
ecgSignals.append(record.p_signal[:,record.sig_name.index('II,')]) |
|
|
46 |
BRSignals.append(record.p_signal[:,record.sig_name.index('RESP,')]) |
|
|
47 |
BRAnn1.append(ann1) |
|
|
48 |
BRAnn2.append(ann2) |
|
|
49 |
|
|
|
50 |
ecgSignals = np.array(ecgSignals,ndmin = 2) |
|
|
51 |
BRSignals = np.array(BRSignals, ndmin = 2) |
|
|
52 |
|
|
|
53 |
signals = np.stack([ecgSignals,BRSignals], axis= -1 ) |
|
|
54 |
|
|
|
55 |
inputECG = [] |
|
|
56 |
groundTruth = [] |
|
|
57 |
|
|
|
58 |
for i in tqdm(range(len(signals))): |
|
|
59 |
|
|
|
60 |
generateSignals = getWindow(signals[i],BRAnn2[i],windows=WINDOWS) |
|
|
61 |
|
|
|
62 |
for sig, ann in generateSignals: |
|
|
63 |
|
|
|
64 |
ecg = sig[:,0] |
|
|
65 |
br = sig[:,1] |
|
|
66 |
|
|
|
67 |
if len(ecg) == 1 or len(ann) == 0: |
|
|
68 |
break |
|
|
69 |
|
|
|
70 |
resampled = resample(ecg, WINDOWS*fs_upsample) |
|
|
71 |
scaler = StandardScaler() |
|
|
72 |
resampled = scaler.fit_transform(resampled.reshape((-1,1))) |
|
|
73 |
transform = dist_transform(br,ann) |
|
|
74 |
|
|
|
75 |
if resampled.shape == (fs_upsample*WINDOWS,1) and transform.shape == (WINDOWS*fs,1): |
|
|
76 |
inputECG.append(resampled.reshape((1,-1))) |
|
|
77 |
groundTruth.append(transform.reshape((1,-1))) |
|
|
78 |
|
|
|
79 |
X_train,X_test,y_train,y_test = train_test_split(np.array(inputECG),np.array(groundTruth),test_size = 0.2, random_state = 42) |
|
|
80 |
|
|
|
81 |
X_train_toTensor = torch.Tensor(X_train).type(torch.float) |
|
|
82 |
X_test_toTensor = torch.Tensor(X_test).type(torch.float) |
|
|
83 |
y_train_toTensor = torch.Tensor(y_train).type(torch.float) |
|
|
84 |
y_test_toTensor = torch.Tensor(y_test).type(torch.float) |
|
|
85 |
|
|
|
86 |
if not(os.path.exists('data')): |
|
|
87 |
os.mkdir('data') |
|
|
88 |
|
|
|
89 |
torch.save(X_train_toTensor, "data/ecgtoBR_train_data.pt") |
|
|
90 |
torch.save(y_train_toTensor, "data/ecgtoBR_train_labels.pt") |
|
|
91 |
torch.save(X_test_toTensor, "data/ecgtoBR_test_data.pt") |
|
|
92 |
torch.save(y_test_toTensor, "data/ecgtoBR_test_labels.pt") |