|
a |
|
b/ecgtoBR/BRnet.py |
|
|
1 |
import torch.nn as nn |
|
|
2 |
import torch |
|
|
3 |
import torch.nn.functional as F |
|
|
4 |
from torch.autograd import Variable |
|
|
5 |
|
|
|
6 |
import numpy as np |
|
|
7 |
|
|
|
8 |
class IncResBlock(nn.Module): ### Inception Resblocks |
|
|
9 |
|
|
|
10 |
def __init__(self, inplanes, planes, convstr=1, convsize = 15, convpadding = 7): |
|
|
11 |
|
|
|
12 |
super(IncResBlock, self).__init__() |
|
|
13 |
|
|
|
14 |
self.Inputconv1x1 = nn.Conv1d(inplanes, planes, kernel_size=1, stride = 1, bias=False) |
|
|
15 |
|
|
|
16 |
self.conv1_1 = nn.Sequential( |
|
|
17 |
nn.Conv1d(in_channels = inplanes,out_channels = planes//4,kernel_size = convsize,stride = convstr,padding = convpadding), |
|
|
18 |
nn.BatchNorm1d(planes//4)) |
|
|
19 |
|
|
|
20 |
self.conv1_2 = nn.Sequential( |
|
|
21 |
nn.Conv1d(inplanes, planes//4, kernel_size=1, stride = convstr, padding=0, bias=False), |
|
|
22 |
nn.BatchNorm1d(planes//4), |
|
|
23 |
nn.LeakyReLU(0.2,), |
|
|
24 |
nn.Conv1d(in_channels = planes//4,out_channels = planes//4,kernel_size = convsize+2,stride = convstr,padding = convpadding+1), |
|
|
25 |
nn.BatchNorm1d(planes//4)) |
|
|
26 |
|
|
|
27 |
self.conv1_3 = nn.Sequential( |
|
|
28 |
nn.Conv1d(inplanes, planes//4, kernel_size=1, stride = convstr, padding=0, bias=False), |
|
|
29 |
nn.BatchNorm1d(planes//4), |
|
|
30 |
nn.LeakyReLU(0.2,), |
|
|
31 |
nn.Conv1d(in_channels = planes//4,out_channels = planes//4,kernel_size = convsize+4,stride = convstr,padding = convpadding+2), |
|
|
32 |
nn.BatchNorm1d(planes//4)) |
|
|
33 |
|
|
|
34 |
self.conv1_4 = nn.Sequential( |
|
|
35 |
nn.Conv1d(inplanes, planes//4, kernel_size=1, stride = convstr, padding=0, bias=False), |
|
|
36 |
nn.BatchNorm1d(planes//4), |
|
|
37 |
nn.LeakyReLU(0.2,), |
|
|
38 |
nn.Conv1d(in_channels = planes//4,out_channels = planes//4,kernel_size = convsize+6,stride = convstr,padding = convpadding+3), |
|
|
39 |
nn.BatchNorm1d(planes//4)) |
|
|
40 |
|
|
|
41 |
self.relu = nn.ReLU() |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
def forward(self, x): |
|
|
45 |
|
|
|
46 |
residual = self.Inputconv1x1(x) |
|
|
47 |
|
|
|
48 |
c1 = self.conv1_1(x) |
|
|
49 |
c2 = self.conv1_2(x) |
|
|
50 |
c3 = self.conv1_3(x) |
|
|
51 |
c4 = self.conv1_4(x) |
|
|
52 |
|
|
|
53 |
out = torch.cat([c1,c2,c3,c4],1) |
|
|
54 |
out += residual |
|
|
55 |
return self.relu(out) |
|
|
56 |
|
|
|
57 |
class IncUNet (nn.Module): ### Inception Unet |
|
|
58 |
|
|
|
59 |
def __init__(self, in_shape): |
|
|
60 |
|
|
|
61 |
super(IncUNet, self).__init__() |
|
|
62 |
in_channels, height, width = in_shape |
|
|
63 |
|
|
|
64 |
self.e1 = nn.Sequential( |
|
|
65 |
nn.Conv1d(in_channels, 64, kernel_size=4, stride=2,padding=1), |
|
|
66 |
nn.BatchNorm1d(64), |
|
|
67 |
nn.LeakyReLU(0.2,), |
|
|
68 |
IncResBlock(64,64)) |
|
|
69 |
|
|
|
70 |
self.e2 = nn.Sequential( |
|
|
71 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
72 |
nn.Conv1d(64, 128, kernel_size=4, stride=2,padding=1), |
|
|
73 |
nn.BatchNorm1d(128), |
|
|
74 |
IncResBlock(128,128)) |
|
|
75 |
|
|
|
76 |
self.e2add = nn.Sequential( |
|
|
77 |
nn.Conv1d(128, 128, kernel_size=3, stride=1,padding=1), |
|
|
78 |
nn.BatchNorm1d(128)) |
|
|
79 |
|
|
|
80 |
self.e3 = nn.Sequential( |
|
|
81 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
82 |
nn.Conv1d(128, 128, kernel_size=3, stride=1,padding=1), |
|
|
83 |
nn.BatchNorm1d(128), |
|
|
84 |
nn.LeakyReLU(0.2,), |
|
|
85 |
nn.Conv1d(128,256, kernel_size=4, stride=2,padding=1), |
|
|
86 |
nn.BatchNorm1d(256), |
|
|
87 |
IncResBlock(256,256)) |
|
|
88 |
|
|
|
89 |
self.e4 = nn.Sequential( |
|
|
90 |
nn.LeakyReLU(0.2,), |
|
|
91 |
nn.Conv1d(256,256, kernel_size=4 , stride=1 , padding=1), |
|
|
92 |
nn.BatchNorm1d(256), |
|
|
93 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
94 |
nn.Conv1d(256,512, kernel_size=4, stride=2,padding=2), |
|
|
95 |
nn.BatchNorm1d(512), |
|
|
96 |
IncResBlock(512,512)) |
|
|
97 |
|
|
|
98 |
self.e4add = nn.Sequential( |
|
|
99 |
nn.LeakyReLU(0.2,), |
|
|
100 |
nn.Conv1d(512,512, kernel_size=3, stride=1,padding=1), |
|
|
101 |
nn.BatchNorm1d(512)) |
|
|
102 |
|
|
|
103 |
self.e5 = nn.Sequential( |
|
|
104 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
105 |
nn.Conv1d(512,512, kernel_size=3, stride=1,padding=1), |
|
|
106 |
nn.BatchNorm1d(512), |
|
|
107 |
nn.LeakyReLU(0.2,), |
|
|
108 |
nn.Conv1d(512,512, kernel_size=4, stride=2,padding=1), |
|
|
109 |
nn.BatchNorm1d(512), |
|
|
110 |
IncResBlock(512,512)) |
|
|
111 |
|
|
|
112 |
self.e6 = nn.Sequential( |
|
|
113 |
nn.LeakyReLU(0.2,), |
|
|
114 |
nn.Conv1d(512,512, kernel_size=3, stride=1,padding=1), |
|
|
115 |
nn.BatchNorm1d(512), |
|
|
116 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
117 |
nn.Conv1d(512,512, kernel_size=4, stride=2,padding=1), |
|
|
118 |
nn.BatchNorm1d(512), |
|
|
119 |
IncResBlock(512,512)) |
|
|
120 |
|
|
|
121 |
self.e6add = nn.Sequential( |
|
|
122 |
nn.Conv1d(512,512, kernel_size=3, stride=1,padding=1), |
|
|
123 |
nn.BatchNorm1d(512)) |
|
|
124 |
|
|
|
125 |
self.e7 = nn.Sequential( |
|
|
126 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
127 |
nn.Conv1d(512,512, kernel_size=3, stride=1,padding=1), |
|
|
128 |
nn.BatchNorm1d(512), |
|
|
129 |
nn.LeakyReLU(0.2,), |
|
|
130 |
nn.Conv1d(512,512, kernel_size=4, stride=2,padding=1), |
|
|
131 |
nn.BatchNorm1d(512), |
|
|
132 |
IncResBlock(512,512)) |
|
|
133 |
|
|
|
134 |
self.e8 = nn.Sequential( |
|
|
135 |
nn.LeakyReLU(0.2,), |
|
|
136 |
nn.Conv1d(512,512, kernel_size=4, stride=1,padding=1), |
|
|
137 |
nn.BatchNorm1d(512), |
|
|
138 |
nn.LeakyReLU(0.2,inplace=True), |
|
|
139 |
nn.Conv1d(512,512, kernel_size=4, stride=2,padding=1), |
|
|
140 |
nn.BatchNorm1d(512)) |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
self.d1 = nn.Sequential( |
|
|
144 |
nn.LeakyReLU(0.2,), |
|
|
145 |
nn.ConvTranspose1d(512, 512, kernel_size=4, stride=2,padding=1), |
|
|
146 |
nn.BatchNorm1d(512), |
|
|
147 |
nn.LeakyReLU(0.2,), |
|
|
148 |
nn.ConvTranspose1d(512, 512, kernel_size=4, stride=1,padding =1), |
|
|
149 |
nn.BatchNorm1d(512), |
|
|
150 |
IncResBlock(512,512)) |
|
|
151 |
|
|
|
152 |
self.d2 = nn.Sequential( |
|
|
153 |
nn.LeakyReLU(0.2,), |
|
|
154 |
nn.ConvTranspose1d(1024, 512, kernel_size=4, stride=2,padding=1), |
|
|
155 |
nn.BatchNorm1d(512), |
|
|
156 |
nn.LeakyReLU(0.2,), |
|
|
157 |
nn.ConvTranspose1d(512, 512, kernel_size=3, stride=1,padding=1), |
|
|
158 |
nn.BatchNorm1d(512), |
|
|
159 |
IncResBlock(512,512)) |
|
|
160 |
|
|
|
161 |
self.d3 = nn.Sequential( |
|
|
162 |
nn.LeakyReLU(0.2,), |
|
|
163 |
nn.ConvTranspose1d(1024, 512, kernel_size=3, stride=1,padding=1), |
|
|
164 |
nn.BatchNorm1d(512), |
|
|
165 |
nn.Dropout(p=0.5), |
|
|
166 |
IncResBlock(512,512)) |
|
|
167 |
|
|
|
168 |
self.d4 = nn.Sequential( |
|
|
169 |
nn.LeakyReLU(0.2,), |
|
|
170 |
nn.ConvTranspose1d(1024, 512, kernel_size=4, stride=2,padding=1), |
|
|
171 |
nn.BatchNorm1d(512), |
|
|
172 |
nn.LeakyReLU(0.2,), |
|
|
173 |
nn.ConvTranspose1d(512, 512, kernel_size=3, stride=1,padding=1), |
|
|
174 |
nn.BatchNorm1d(512), |
|
|
175 |
IncResBlock(512,512)) |
|
|
176 |
|
|
|
177 |
self.d5 = nn.Sequential( |
|
|
178 |
nn.LeakyReLU(0.2,), |
|
|
179 |
nn.ConvTranspose1d(1024, 512, kernel_size=4, stride=2,padding=1), |
|
|
180 |
nn.BatchNorm1d(512), |
|
|
181 |
nn.LeakyReLU(0.2,), |
|
|
182 |
nn.ConvTranspose1d(512, 512, kernel_size=3, stride=1,padding=1), |
|
|
183 |
nn.BatchNorm1d(512), |
|
|
184 |
IncResBlock(512,512)) |
|
|
185 |
|
|
|
186 |
self.d6 = nn.Sequential( |
|
|
187 |
nn.LeakyReLU(0.2,), |
|
|
188 |
nn.ConvTranspose1d(1024, 512, kernel_size=3, stride=1,padding=1), |
|
|
189 |
nn.BatchNorm1d(512), |
|
|
190 |
IncResBlock(512,512)) |
|
|
191 |
|
|
|
192 |
self.d7 = nn.Sequential( |
|
|
193 |
nn.LeakyReLU(0.2,), |
|
|
194 |
nn.ConvTranspose1d(1024, 256, kernel_size=4, stride=2,padding=1), |
|
|
195 |
nn.BatchNorm1d(256), |
|
|
196 |
nn.LeakyReLU(0.2,), |
|
|
197 |
nn.ConvTranspose1d(256, 256, kernel_size=3, stride=1,padding=1), |
|
|
198 |
nn.BatchNorm1d(256), |
|
|
199 |
IncResBlock(256,256)) |
|
|
200 |
|
|
|
201 |
self.d8 = nn.Sequential( |
|
|
202 |
nn.LeakyReLU(0.2,), |
|
|
203 |
nn.ConvTranspose1d(512, 128, kernel_size=4, stride=2,padding=1), |
|
|
204 |
nn.BatchNorm1d(128), |
|
|
205 |
nn.LeakyReLU(0.2,), |
|
|
206 |
nn.ConvTranspose1d(128, 128, kernel_size=3, stride=1,padding=1), |
|
|
207 |
nn.BatchNorm1d(128)) |
|
|
208 |
|
|
|
209 |
self.d9 = nn.Sequential( |
|
|
210 |
nn.LeakyReLU(0.2,), |
|
|
211 |
nn.ConvTranspose1d(256, 128, kernel_size=3, stride=1,padding=1), |
|
|
212 |
nn.BatchNorm1d(128)) |
|
|
213 |
|
|
|
214 |
self.d10 = nn.Sequential( |
|
|
215 |
nn.LeakyReLU(0.2,), |
|
|
216 |
nn.ConvTranspose1d(256, 64, kernel_size=3, stride=1,padding=1), |
|
|
217 |
nn.BatchNorm1d(64)) |
|
|
218 |
|
|
|
219 |
self.out_l = nn.Sequential( |
|
|
220 |
nn.LeakyReLU(0.2,), |
|
|
221 |
nn.ConvTranspose1d(256, in_channels, kernel_size=3, stride=1,padding=1)) |
|
|
222 |
|
|
|
223 |
|
|
|
224 |
def forward(self, x): |
|
|
225 |
|
|
|
226 |
### Encoder |
|
|
227 |
en1 = self.e1(x) |
|
|
228 |
en2 = self.e2(en1) |
|
|
229 |
en2add = self.e2add(en2) |
|
|
230 |
en3 = self.e3(en2add) |
|
|
231 |
en4 = self.e4(en3) |
|
|
232 |
en4add = self.e4add(en4) |
|
|
233 |
en5 = self.e5(en4add) |
|
|
234 |
en6 = self.e6(en5) |
|
|
235 |
en6add = self.e6add(en6) |
|
|
236 |
en7 = self.e7(en6add) |
|
|
237 |
en8 = self.e8(en7) |
|
|
238 |
|
|
|
239 |
|
|
|
240 |
### Decoder |
|
|
241 |
de1_ = self.d1(en8) |
|
|
242 |
de1 = torch.cat([en7,de1_],1) |
|
|
243 |
de2_ = self.d2(de1) |
|
|
244 |
de2 = torch.cat([en6add,de2_],1) |
|
|
245 |
de3_ = self.d3(de2) |
|
|
246 |
de3 = torch.cat([en6,de3_],1) |
|
|
247 |
de4_ = self.d4(de3) |
|
|
248 |
de4 = torch.cat([en5,de4_],1) |
|
|
249 |
de5_ = self.d5(de4) |
|
|
250 |
de5_ = nn.ConstantPad1d((0,1),0)(de5_) |
|
|
251 |
de5 = torch.cat([en4add,de5_],1) |
|
|
252 |
de6_ = self.d6(de5) |
|
|
253 |
de6 = torch.cat([en4,de6_],1) |
|
|
254 |
de7_ = self.d7(de6) |
|
|
255 |
de7_ = de7_[:,:,:-1] |
|
|
256 |
de7 = torch.cat([en3,de7_],1) |
|
|
257 |
de8 = self.d8(de7) |
|
|
258 |
de8_ = self.d8(de7) |
|
|
259 |
de8 = torch.cat([en2add,de8_],1) |
|
|
260 |
|
|
|
261 |
return self.out_l(de8) |
|
|
262 |
|
|
|
263 |
|