Switch to side-by-side view

--- a/README.md
+++ b/README.md
@@ -1,92 +1,89 @@
-# OMNI (Open Source Monitoring of Neonates and Infants) 
-
-<p align="center">
-  <image src = 'images/omni-logo.png' >
-</p>
-
-
-
-## Software Requirements
-Run `sh requirements.sh` in a virtual environment in order to download the required libraries. 
-
-## Hardware Requirements (Edge implementation)
-
-![Edge HW block diag](https://user-images.githubusercontent.com/1295467/76793911-5c573680-679c-11ea-8eb9-fe0abab7e5ac.png)
-### Components needed:
-
- 1. [OpenBCI Ganglion kit](https://shop.openbci.com/products/ganglion-board?variant=13461804483)
- 
-	 Open source biosignal acquisition hardware for [research grade biosignal acquisition](https://openbci.com/community/published-research-with-openbci/)
- 
- 2. [Raspberry Pi 4](https://www.raspberrypi.org/products/raspberry-pi-4-model-b/)
- 3. [Rasberry Pi 4 cooling case](https://www.newegg.com/p/1W8-00Y1-00032)
- 4. Shirt using [conductive textile electrodes](https://www.alibaba.com/product-detail/Conductive-textile-ecg-Electrodes_1127697682.html) [1$ for 1 electrode]
- 
-
-Wearable ECG electrodes --> OpenBCI Ganglion ---(Bluetooth)---> Raspberry Pi 4
-
-## System Configuration
-* Ubuntu 16.04
-* Nvidia 1080Ti - (Required for training the model)
-
-## Train a model to extract R peaks and Heart Rate from ECG waveform.  
-* Download ECG MITDB monitoring data from https://storage.googleapis.com/mitdb-1.0.0.physionet.org/mit-bih-arrhythmia-database-1.0.0.zip and unzip it.
-* To train: `python train.py --preprocess_data --data_path "PATH TO DATA"` 
-
-## Train a model to extract Breathing Rate from ECG waveform. 
-* Download ECG from the BIDMC database which is derived from MIMIC-II from https://physionet.org/static/published-projects/bidmc/bidmc-ppg-and-respiration-dataset-1.0.0.zip and unzip it. 
-* To train: `python train.py --preprocess_data --data_path "PATH TO DATA"`
-
-## Model Inference
-* Download ECG from the preterm infant database from https://physionet.org/static/published-projects/picsdb/preterm-infant-cardio-respiratory-signals-database-1.0.0.zip and unzip it. 
-* Download the Heart Rate computation model from here: https://drive.google.com/open?id=1yI7G4nofjuzFWkD1CfsOtLZxaukTu0di
-* Download the Breathing Rate computation model from here: https://drive.google.com/open?id=1ycV74LfGmgcGmLlrPn2VileeFNsGrRZT
-* To run inference and view GUI type: `python run_model.py --path_dir "PATH TO DATA" --saved_hr_model_path "PATH TO HR MODEL" --saved_br_model_path "PATH TO BR MODEL" --patient_no 3 --viewer 1`
-
-# OMNI OpenBCI Pi Inference
-
- Edge inference of ECG R-peak detection and Respiration extraction using Raspberry Pi 4 using ECG (OpenBCI Ganglion).
-
-
-## Hardware Design
-
-Wearable ECG electrodes --> OpenBCI Ganglion ---(Bluetooth)---> Raspberry Pi 4
-
-## Software Design
-
-OpenBCI client ----(LSL)--->  Python -> PyTorch inference --> Breathing Rate, Heart Rate
-
-
-## Installation instruction
-
-### Install PyTorch on Raspberry Pi 4:
-
- 1. Install PyTorch dependicies 
- `sudo apt install libopenblas-dev libblas-dev m4 cmake cython python3-yaml libatlas-base-dev`
- 2. Increase swap file memory to 1600, Edit variable `CONF_SWAPSIZE` in `/etc/dphys-swapfile`
- 3. Reset environmental variables like ONNX_ML [Instructions](https://gist.github.com/akaanirban/621e63237e63bb169126b537d7a1d979) 
- 4. Download PyTorch package compiled for Armv7 ([torch-1.1.0-cp37-cp37m-linux_armv7l.whl](https://github.com/marcusvlc/pytorch-on-rpi/blob/master/torch-1.1.0-cp37-cp37m-linux_armv7l.whl))
- 5. Install using the command `sudo pip3 install torch-1.1.0-cp37-cp37m-linux_armv7l.whl` in the same directory
-
-Refer [here](https://github.com/marcusvlc/pytorch-on-rpi) for troubleshooting 
-
-### Install OpenBCI Ganglion client on Raspberry Pi 4:
-
-1. Clone OpenBCI_Python repo
- `git clone htps://github.com/OpenBCI/OpenBCI_Python.git`
-2. Install the following requisites python packages using `pip3 install`
-	pylsl, python-osc, six, socketIO-client, websocket-client, Yapsy, xmldict, bluepy
-3. Open folder OpenBCI_Python and run   
-    `sudo python3 user.py --board ganglion -a streamer_lsl` to open a lab streaming layer stream of sensor data from the ganglion
-    
-## Instructions to run to perform real time breathing rate/ heart rate inference using OpenBCI data
-1. Run the lsl streamer script to get data to the inference script
-`sudo python3 user.py --board ganglion -a streamer_lsl`
-3. Run the visualization and edge inference code on the pi using  `python3 lsl_openbci.py`
-
-
-## Sample Predictions
-![image](https://user-images.githubusercontent.com/1295467/76792925-742dbb00-679a-11ea-8865-6d5f8c83cfe6.png)
-
-![image](images/ezgif.com-gif-maker.gif)
-Above is an example prediction for noisy real time ECG data obtained using the edge inference model. The beat predictions are represented as blue markers on the ECG. 
+# OMNI (Open Source Monitoring of Neonates and Infants) 
+
+
+
+
+
+## Software Requirements
+Run `sh requirements.sh` in a virtual environment in order to download the required libraries. 
+
+## Hardware Requirements (Edge implementation)
+
+![Edge HW block diag](https://user-images.githubusercontent.com/1295467/76793911-5c573680-679c-11ea-8eb9-fe0abab7e5ac.png)
+### Components needed:
+
+ 1. [OpenBCI Ganglion kit](https://shop.openbci.com/products/ganglion-board?variant=13461804483)
+ 
+	 Open source biosignal acquisition hardware for [research grade biosignal acquisition](https://openbci.com/community/published-research-with-openbci/)
+ 
+ 2. [Raspberry Pi 4](https://www.raspberrypi.org/products/raspberry-pi-4-model-b/)
+ 3. [Rasberry Pi 4 cooling case](https://www.newegg.com/p/1W8-00Y1-00032)
+ 4. Shirt using [conductive textile electrodes](https://www.alibaba.com/product-detail/Conductive-textile-ecg-Electrodes_1127697682.html) [1$ for 1 electrode]
+ 
+
+Wearable ECG electrodes --> OpenBCI Ganglion ---(Bluetooth)---> Raspberry Pi 4
+
+## System Configuration
+* Ubuntu 16.04
+* Nvidia 1080Ti - (Required for training the model)
+
+## Train a model to extract R peaks and Heart Rate from ECG waveform.  
+* Download ECG MITDB monitoring data from https://storage.googleapis.com/mitdb-1.0.0.physionet.org/mit-bih-arrhythmia-database-1.0.0.zip and unzip it.
+* To train: `python train.py --preprocess_data --data_path "PATH TO DATA"` 
+
+## Train a model to extract Breathing Rate from ECG waveform. 
+* Download ECG from the BIDMC database which is derived from MIMIC-II from https://physionet.org/static/published-projects/bidmc/bidmc-ppg-and-respiration-dataset-1.0.0.zip and unzip it. 
+* To train: `python train.py --preprocess_data --data_path "PATH TO DATA"`
+
+## Model Inference
+* Download ECG from the preterm infant database from https://physionet.org/static/published-projects/picsdb/preterm-infant-cardio-respiratory-signals-database-1.0.0.zip and unzip it. 
+* Download the Heart Rate computation model from here: https://drive.google.com/open?id=1yI7G4nofjuzFWkD1CfsOtLZxaukTu0di
+* Download the Breathing Rate computation model from here: https://drive.google.com/open?id=1ycV74LfGmgcGmLlrPn2VileeFNsGrRZT
+* To run inference and view GUI type: `python run_model.py --path_dir "PATH TO DATA" --saved_hr_model_path "PATH TO HR MODEL" --saved_br_model_path "PATH TO BR MODEL" --patient_no 3 --viewer 1`
+
+# OMNI OpenBCI Pi Inference
+
+ Edge inference of ECG R-peak detection and Respiration extraction using Raspberry Pi 4 using ECG (OpenBCI Ganglion).
+
+
+## Hardware Design
+
+Wearable ECG electrodes --> OpenBCI Ganglion ---(Bluetooth)---> Raspberry Pi 4
+
+## Software Design
+
+OpenBCI client ----(LSL)--->  Python -> PyTorch inference --> Breathing Rate, Heart Rate
+
+
+## Installation instruction
+
+### Install PyTorch on Raspberry Pi 4:
+
+ 1. Install PyTorch dependicies 
+ `sudo apt install libopenblas-dev libblas-dev m4 cmake cython python3-yaml libatlas-base-dev`
+ 2. Increase swap file memory to 1600, Edit variable `CONF_SWAPSIZE` in `/etc/dphys-swapfile`
+ 3. Reset environmental variables like ONNX_ML [Instructions](https://gist.github.com/akaanirban/621e63237e63bb169126b537d7a1d979) 
+ 4. Download PyTorch package compiled for Armv7 ([torch-1.1.0-cp37-cp37m-linux_armv7l.whl](https://github.com/marcusvlc/pytorch-on-rpi/blob/master/torch-1.1.0-cp37-cp37m-linux_armv7l.whl))
+ 5. Install using the command `sudo pip3 install torch-1.1.0-cp37-cp37m-linux_armv7l.whl` in the same directory
+
+Refer [here](https://github.com/marcusvlc/pytorch-on-rpi) for troubleshooting 
+
+### Install OpenBCI Ganglion client on Raspberry Pi 4:
+
+1. Clone OpenBCI_Python repo
+ `git clone htps://github.com/OpenBCI/OpenBCI_Python.git`
+2. Install the following requisites python packages using `pip3 install`
+	pylsl, python-osc, six, socketIO-client, websocket-client, Yapsy, xmldict, bluepy
+3. Open folder OpenBCI_Python and run   
+    `sudo python3 user.py --board ganglion -a streamer_lsl` to open a lab streaming layer stream of sensor data from the ganglion
+    
+## Instructions to run to perform real time breathing rate/ heart rate inference using OpenBCI data
+1. Run the lsl streamer script to get data to the inference script
+`sudo python3 user.py --board ganglion -a streamer_lsl`
+3. Run the visualization and edge inference code on the pi using  `python3 lsl_openbci.py`
+
+
+## Sample Predictions
+![image](https://user-images.githubusercontent.com/1295467/76792925-742dbb00-679a-11ea-8865-6d5f8c83cfe6.png?raw=true)
+
+Above is an example prediction for noisy real time ECG data obtained using the edge inference model. The beat predictions are represented as blue markers on the ECG.