Run sh requirements.sh
in a virtual environment in order to download the required libraries.
Open source biosignal acquisition hardware for research grade biosignal acquisition
Wearable ECG electrodes --> OpenBCI Ganglion ---(Bluetooth)---> Raspberry Pi 4
python train.py --preprocess_data --data_path "PATH TO DATA"
python train.py --preprocess_data --data_path "PATH TO DATA"
python run_model.py --path_dir "PATH TO DATA" --saved_hr_model_path "PATH TO HR MODEL" --saved_br_model_path "PATH TO BR MODEL" --patient_no 3 --viewer 1
Edge inference of ECG R-peak detection and Respiration extraction using Raspberry Pi 4 using ECG (OpenBCI Ganglion).
Wearable ECG electrodes --> OpenBCI Ganglion ---(Bluetooth)---> Raspberry Pi 4
OpenBCI client ----(LSL)---> Python -> PyTorch inference --> Breathing Rate, Heart Rate
sudo apt install libopenblas-dev libblas-dev m4 cmake cython python3-yaml libatlas-base-dev
CONF_SWAPSIZE
in /etc/dphys-swapfile
sudo pip3 install torch-1.1.0-cp37-cp37m-linux_armv7l.whl
in the same directoryRefer here for troubleshooting
git clone htps://github.com/OpenBCI/OpenBCI_Python.git
pip3 install
sudo python3 user.py --board ganglion -a streamer_lsl
to open a lab streaming layer stream of sensor data from the ganglionsudo python3 user.py --board ganglion -a streamer_lsl
python3 lsl_openbci.py
Above is an example prediction for noisy real time ECG data obtained using the edge inference model. The beat predictions are represented as blue markers on the ECG.