[390c2f]: / utils.py

Download this file

367 lines (297 with data), 14.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import plotly.express as px
from mpl_toolkits.mplot3d import Axes3D
import torch
import torch.nn as nn
EPS = 1e-4
class ProductOfExperts(nn.Module):
"""Return parameters for product of independent experts.
See https://arxiv.org/pdf/1410.7827.pdf for equations.
Args:
mu (torch.Tensor): Mean of experts distribution. M x D for M experts
logvar (torch.Tensor): Log of variance of experts distribution. M x D for M experts
"""
def forward(self, mu, logvar):
var = torch.exp(logvar) + EPS
T = 1. / (var + EPS)
pd_mu = torch.sum(mu * T, dim=0) / torch.sum(T, dim=0)
pd_var = 1. / torch.sum(T, dim=0)
pd_logvar = torch.log(pd_var + EPS)
return pd_mu, pd_logvar
class alphaProductOfExperts(nn.Module):
"""Return parameters for weighted product of independent experts (mmJSD implementation).
See https://arxiv.org/pdf/1410.7827.pdf for equations.
Args:
mu (torch.Tensor): Mean of experts distribution. M x D for M experts
logvar (torch.Tensor): Log of variance of experts distribution. M x D for M experts
"""
def forward(self, mu, logvar, weights=None):
if weights is None:
num_components = mu.shape[0]
weights = (1/num_components) * torch.ones(mu.shape).to(mu.device)
var = torch.exp(logvar) + EPS
T = 1. / (var + EPS)
weights = torch.broadcast_to(weights, mu.shape)
pd_var = 1. / torch.sum(weights * T + EPS, dim=0)
pd_mu = pd_var * torch.sum(weights * mu * T, dim=0)
pd_logvar = torch.log(pd_var + EPS)
return pd_mu, pd_logvar
class weightedProductOfExperts(nn.Module):
"""Return parameters for weighted product of independent experts.
See https://arxiv.org/pdf/1410.7827.pdf for equations.
Args:
mu (torch.Tensor): Mean of experts distribution. M x D for M experts
logvar (torch.Tensor): Log of variance of experts distribution. M x D for M experts
"""
def forward(self, mu, logvar, weight):
var = torch.exp(logvar) + EPS
weight = weight[:, None, :].repeat(1, mu.shape[1],1)
T = 1.0 / (var + EPS)
pd_var = 1. / torch.sum(weight * T + EPS, dim=0)
pd_mu = pd_var * torch.sum(weight * mu * T, dim=0)
pd_logvar = torch.log(pd_var + EPS)
return pd_mu, pd_logvar
class MixtureOfExperts(nn.Module):
"""Return parameters for mixture of independent experts.
Implementation from: https://github.com/thomassutter/MoPoE
Args:
mus (torch.Tensor): Mean of experts distribution. M x D for M experts
logvars (torch.Tensor): Log of variance of experts distribution. M x D for M experts
"""
def forward(self, mus, logvars):
num_components = mus.shape[0]
num_samples = mus.shape[1]
weights = (1/num_components) * torch.ones(num_components).to(mus[0].device)
idx_start = []
idx_end = []
for k in range(0, num_components):
if k == 0:
i_start = 0
else:
i_start = int(idx_end[k-1])
if k == num_components-1:
i_end = num_samples
else:
i_end = i_start + int(torch.floor(num_samples*weights[k]))
idx_start.append(i_start)
idx_end.append(i_end)
idx_end[-1] = num_samples
mu_sel = torch.cat([mus[k, idx_start[k]:idx_end[k], :] for k in range(num_components)])
logvar_sel = torch.cat([logvars[k, idx_start[k]:idx_end[k], :] for k in range(num_components)])
return mu_sel, logvar_sel
class MeanRepresentation(nn.Module):
"""Return mean of separate VAE representations.
Args:
mu (torch.Tensor): Mean of distributions. M x D for M views.
logvar (torch.Tensor): Log of Variance of distributions. M x D for M views.
"""
def forward(self, mu, logvar):
mean_mu = torch.mean(mu, axis=0)
mean_logvar = torch.mean(logvar, axis=0)
return mean_mu, mean_logvar
def visualize_PC_with_twolabel_rotated(nodes_xyz_pre, labels_pre, labels_gd, filename='PC_label.pdf'):
# Define custom colors for labels
color_dict = {0: '#BCB6AE', 1: '#288596', 2: '#7D9083'}
df = pd.DataFrame(nodes_xyz_pre, columns=['x', 'y', 'z'])
colors_gd = [color_dict[label] for label in labels_gd]
colors_pre = [color_dict[label] for label in labels_pre]
fig, (ax1, ax2) = plt.subplots(1, 2, subplot_kw={'projection': '3d'})
ax1.scatter(df['x'], df['y'], df['z'], c=colors_gd, s=1.5)
ax1.set_title('Ground truth')
ax2.scatter(df['x'], df['y'], df['z'], c=colors_pre, s=1.5)
ax2.set_title('Prediction')
ax1.set_axis_off() # Hide coordinate space
ax2.set_axis_off() # Hide coordinate space
# 定义交互事件函数
def on_rotate(event):
# 获取当前旋转的角度
elev = ax1.elev
azim = ax1.azim
# 设置两个子图的视角
ax1.view_init(elev=elev, azim=azim)
ax2.view_init(elev=elev, azim=azim)
# 更新图形
fig.canvas.draw()
# 绑定交互事件
fig.canvas.mpl_connect('motion_notify_event', on_rotate)
plt.show()
def visualize_PC_with_twolabel(nodes_xyz_pre, labels_pre, labels_gd, filename='PC_label.pdf'):
# Define custom colors for labels
color_dict = {0: '#BCB6AE', 1: '#288596', 2: '#7D9083'}
df = pd.DataFrame(nodes_xyz_pre, columns=['x', 'y', 'z'])
colors_pre = [color_dict[label] for label in labels_pre]
colors_gd = [color_dict[label] for label in labels_gd]
fig = plt.figure(figsize=(6, 4))
ax1 = fig.add_subplot(122, projection='3d')
ax1.scatter(df['x'], df['y'], df['z'], c=colors_pre, s=1.5)
ax1.set_axis_off() # Hide coordinate space
ax2 = fig.add_subplot(121, projection='3d')
ax2.scatter(df['x'], df['y'], df['z'], c=colors_gd, s=1.5)
ax2.set_axis_off() # Hide coordinate space
plt.subplots_adjust(wspace=0)
plt.savefig(filename)
# plt.show()
plt.close(fig)
def visualize_two_PC(nodes_xyz_pre, nodes_xyz_gd, labels, filename='PC_recon.pdf'):
color_dict = {0: '#BCB6AE', 1: '#BCB6AE', 2: '#BCB6AE'}
colors = [color_dict[label] for label in labels]
df_pre = pd.DataFrame(nodes_xyz_pre, columns=['x', 'y', 'z'])
df_gd = pd.DataFrame(nodes_xyz_gd, columns=['x', 'y', 'z'])
fig = plt.figure(figsize=(4, 6))
ax1 = fig.add_subplot(212, projection='3d')
ax1.scatter(df_pre['x'], df_pre['y'], df_pre['z'], c=colors, s=1.5)
ax1.set_axis_off() # Hide coordinate space
ax2 = fig.add_subplot(211, projection='3d')
ax2.scatter(df_gd['x'], df_gd['y'], df_gd['z'], c=colors, s=1.5)
ax2.set_axis_off() # Hide coordinate space
plt.subplots_adjust(hspace=0)
plt.savefig(filename)
# plt.show()
plt.close(fig)
def visualize_PC_with_label(nodes_xyz, labels=1, filename='PC_label.pdf'):
# plot in 3d using plotly
df = pd.DataFrame(nodes_xyz, columns=['x', 'y', 'z'])
# define custom colors for each category
# colors = {'0': '#BCB6AE', '1': '#288596', '3': '#7D9083'}
# colors = {'0': 'grey', '1': 'blue', '3': 'red'}
# df['color'] = label.astype(int)
# fig = px.scatter_3d(df, x='x', y='y', z='z', color = 'color', color_discrete_sequence=[colors[k] for k in sorted(colors.keys())])
# # fig = px.scatter_3d(df, x='x', y='y', z='z', color = clr_nodes, color_continuous_scale=px.colors.sequential.Viridis)
# fig.update_traces(marker_size = 1.5) # increase marker_size for bigger node size
# fig.show()
# plotly.offline.plot(fig)
# fig.write_image(filename)
# Define custom colors for labels
color_dict = {0: '#BCB6AE', 1: '#288596', 2: '#7D9083'}
# color_dict = {0: '#BCB6AE', 1: '#288596'}
colors = [color_dict[label] for label in labels]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(df['x'], df['y'], df['z'], c=colors, s=1.5)
ax.set_axis_off() # Hide coordinate space
plt.savefig(filename)
plt.close(fig)
def save_coord_for_visualization(data, savename):
with open('./log/' + savename+'_LVendo.csv', 'w') as f:
f.write('"Points:0","Points:1","Points:2"\n')
for i in range(0, len(data)):
f.write(str(data[i, 0]) + ',' + str(data[i, 1]) + ',' + str(data[i, 2]) + '\n')
with open('./log/' + savename+'_epi.csv', 'w') as f:
f.write('"Points:0","Points:1","Points:2"\n')
for i in range(0, len(data)):
f.write(str(data[i, 3]) + ',' + str(data[i, 4]) + ',' + str(data[i, 5]) + '\n')
with open('./log/' + savename+'_RVendo.csv', 'w') as f:
f.write('"Points:0","Points:1","Points:2"\n')
for i in range(0, len(data)):
f.write(str(data[i, 6]) + ',' + str(data[i, 7]) + ',' + str(data[i, 8]) + '\n')
def lossplot_detailed(lossfile_train, lossfile_val, lossfile_mesh_train, lossfile_mesh_val, lossfile_KL_train, lossfile_KL_val, lossfile_compactness_train, lossfile_compactness_val, lossfile_PC_train, lossfile_PC_val, lossfile_ecg_train, lossfile_ecg_val, lossfile_RVp_train, lossfile_RVp_val, lossfile_size_train, lossfile_size_val):
ax = plt.subplot(331)
ax.set_title('total loss')
lossplot(lossfile_train, lossfile_val)
ax = plt.subplot(332)
ax.set_title('MI Dice + CE loss')
lossplot(lossfile_mesh_train, lossfile_mesh_val)
ax = plt.subplot(333)
ax.set_title('MI compactness loss')
lossplot(lossfile_compactness_train, lossfile_compactness_val)
ax = plt.subplot(334)
ax.set_title('KL loss')
lossplot(lossfile_KL_train, lossfile_KL_val)
ax = plt.subplot(335)
ax.set_title('PC recon loss')
lossplot(lossfile_PC_train, lossfile_PC_val)
ax = plt.subplot(336)
ax.set_title('ECG recon loss')
lossplot(lossfile_ecg_train, lossfile_ecg_val)
ax = plt.subplot(337)
ax.set_title('MI size loss')
lossplot(lossfile_size_train, lossfile_size_val)
ax = plt.subplot(338)
ax.set_title('MI RVpenalty loss')
lossplot(lossfile_RVp_train, lossfile_RVp_val)
# set the spacing between subplots
plt.subplots_adjust(left=0.1,
bottom=0.1,
right=0.9,
top=0.9,
wspace=0.4,
hspace=0.4)
plt.savefig("img.png")
# plt.show()
def lossplot_classify(lossfile_train, lossfile_val, lossfile_mesh_train, lossfile_mesh_val, lossfile_KL_train, lossfile_KL_val, lossfile_ecg_train, lossfile_ecg_val):
ax = plt.subplot(221)
ax.set_title('total loss')
lossplot(lossfile_train, lossfile_val)
ax = plt.subplot(222)
ax.set_title('MI classfication loss')
lossplot(lossfile_mesh_train, lossfile_mesh_val)
ax = plt.subplot(223)
ax.set_title('KL loss')
lossplot(lossfile_KL_train, lossfile_KL_val)
ax = plt.subplot(224)
ax.set_title('ECG recon loss')
lossplot(lossfile_ecg_train, lossfile_ecg_val)
# set the spacing between subplots
plt.subplots_adjust(left=0.1,
bottom=0.1,
right=0.9,
top=0.9,
wspace=0.4,
hspace=0.4)
plt.savefig("img_classify.png")
# plt.show()
def lossplot(lossfile1, lossfile2):
loss = np.loadtxt(lossfile1)
x = range(0, loss.size)
y = loss
plt.plot(x, y, '#FF7F61') # , label='train'
plt.legend(frameon=False)
loss = np.loadtxt(lossfile2)
x = range(0, loss.size)
y = loss
plt.plot(x, y, '#2C4068') # , label='val'
plt.legend(frameon=False)
# plt.show()
# plt.savefig("img.png")
def ECG_visual_two(prop_data, target_ecg):
prop_data[target_ecg[np.newaxis, ...] == 0.0], target_ecg[target_ecg == 0.0] = np.nan, np.nan
leadNames = ['I', 'II', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6']
fig, axs = plt.subplots(2, 8, constrained_layout=True, figsize=(40, 10))
for i in range(8):
leadName = leadNames[i]
axs[0, i].plot(prop_data[0, i, :], color=[223/256,176/256,160/256], label='pred', linewidth=4)
for j in range(1, prop_data.shape[0]):
axs[0, i].plot(prop_data[j, i, :], color=[223/256,176/256,160/256], linewidth=4)
axs[0, i].plot(target_ecg[i, :], color=[154/256,181/256,174/256], label='true', linewidth=4)
axs[0, i].set_title('Lead ' + leadName, fontsize=20)
axs[0, i].set_axis_off()
axs[1, i].set_axis_off()
axs[0, i].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=20)
fig.savefig("ECG_visual.pdf")
# plt.show()
plt.close(fig)
if __name__ == '__main__':
# input_data_dir = 'C:/Users/lilei/OneDrive - Nexus365/2021_Oxford/Oxford Research/BivenMesh_Script/dataset/gt/'
# pc = input_data_dir + 'dense_RV_endo_output_labeled_ES_pc_6003744.ply'
# pc_volume = calculate_pointcloudvolume(pc)
# F_visual_CV()
log_dir = 'E:/2022_ECG_inference/Cardiac_Personalisation/log'
lossfile_train = log_dir + "/training_loss.txt"
lossfile_val = log_dir + "/val_loss.txt"
lossfile_geometry_train = log_dir + "/training_calculate_inference_loss.txt"
lossfile_geometry_val = log_dir + "/val_calculate_inference_loss.txt"
lossfile_compactness_train = log_dir + "/training_compactness_loss.txt"
lossfile_compactness_val = log_dir + "/val_compactness_loss.txt"
lossfile_KL_train = log_dir + "/training_KL_loss.txt"
lossfile_KL_val = log_dir + "/val_KL_loss.txt"
lossfile_PC_train = log_dir + "/training_PC_loss.txt"
lossfile_PC_val = log_dir + "/val_PC_loss.txt"
lossfile_ecg_train = log_dir + "/training_ecg_loss.txt"
lossfile_ecg_val = log_dir + "/val_ecg_loss.txt"
lossfile_RVp_train = log_dir + "/training_RVp_loss.txt"
lossfile_RVp_val = log_dir + "/val_RVp_loss.txt"
lossfile_size_train = log_dir + "/training_MIsize_loss.txt"
lossfile_size_val = log_dir + "/val_MIsize_loss.txt"
lossplot_detailed(lossfile_train, lossfile_val, lossfile_geometry_train, lossfile_geometry_val, lossfile_KL_train, lossfile_KL_val, lossfile_compactness_train, lossfile_compactness_val, lossfile_PC_train, lossfile_PC_val, lossfile_ecg_train, lossfile_ecg_val, lossfile_RVp_train, lossfile_RVp_val, lossfile_size_train, lossfile_size_val)