[390c2f]: / train.py

Download this file

394 lines (325 with data), 19.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import argparse
import torch
torch.cuda.empty_cache() # clearing the occupied cuda memory
from torch.backends import cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
import os
import numpy as np
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256"
from dataset import LoadDataset
from model import InferenceNet, ECGnet
from loss import calculate_inference_loss, calculate_reconstruction_loss, calculate_ECG_reconstruction_loss, calculate_classify_loss
from utils import lossplot, lossplot_detailed, visualize_PC_with_label, ECG_visual_two, lossplot_classify, visualize_PC_with_twolabel
def train_ecg(args):
DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
# DEVICE = torch.device('cpu')
train_dataset = LoadDataset(path=args.partial_root, num_input=args.num_input, split='train')
val_dataset = LoadDataset(path=args.partial_root, num_input=args.num_input, split='val')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
cudnn.benchmark = True
network = InferenceNet(in_ch=args.in_ch, out_ch=args.out_ch, num_input=args.num_input, z_dims=args.z_dims)
if args.model is not None:
print('Loaded trained model from {}.'.format(args.model))
network.load_state_dict(torch.load(args.model))
else:
print('Begin training new model.')
network.to(DEVICE)
optimizer = optim.Adam(network.parameters(), lr=args.base_lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_steps, gamma=args.lr_decay_rate)
max_iter = int(len(train_dataset) / args.batch_size + 0.5)
minimum_loss = 1e4
best_epoch = 0
lossfile_train = args.log_dir + "/training_loss.txt"
lossfile_val = args.log_dir + "/val_loss.txt"
lossfile_geometry_train = args.log_dir + "/training_calculate_inference_loss.txt"
lossfile_geometry_val = args.log_dir + "/val_calculate_inference_loss.txt"
lossfile_KL_train = args.log_dir + "/training_KL_loss.txt"
lossfile_KL_val = args.log_dir + "/val_KL_loss.txt"
lossfile_ecg_train = args.log_dir + "/training_ecg_loss.txt"
lossfile_ecg_val = args.log_dir + "/val_ecg_loss.txt"
for epoch in range(1, args.epochs + 1):
if ((epoch % 25) == 0) and (epoch != 0):
lossplot_classify(lossfile_train, lossfile_val, lossfile_geometry_train, lossfile_geometry_val, lossfile_KL_train, lossfile_KL_val, lossfile_ecg_train, lossfile_ecg_val)
f_train = open(lossfile_train, 'a') # a: additional writing; w: overwrite writing
f_val = open(lossfile_val, 'a')
f_MI_train = open(lossfile_geometry_train, 'a') # a: additional writing; w: overwrite writing
f_MI_val = open(lossfile_geometry_val, 'a')
f_KL_train = open(lossfile_KL_train, 'a') # a: additional writing; w: overwrite writing
f_KL_val = open(lossfile_KL_val, 'a')
f_ecg_train = open(lossfile_ecg_train, 'a') # a: additional writing; w: overwrite writing
f_ecg_val = open(lossfile_ecg_val, 'a')
# if ((epoch % 25) == 0) and (epoch != 0):
# if lamda_KL < 1:
# lamda_KL = 0.1*epoch*lamda_KL # 0.25
# else:
# lamda_KL = 0.1
# training
network.train()
total_loss, iter_count = 0, 0
for i, data in enumerate(train_dataloader, 1):
partial_input, ECG_input, gt_MI, partial_input_coarse = data
partial_input, ECG_input, gt_MI = partial_input.to(DEVICE), ECG_input.to(DEVICE), gt_MI.to(DEVICE)
partial_input_coarse = partial_input_coarse.to(DEVICE)
partial_input = partial_input.permute(0, 2, 1)
optimizer.zero_grad()
y_MI, y_ECG, mu, log_var = network(partial_input, ECG_input)
loss_seg, KL_loss = calculate_classify_loss(y_MI, gt_MI, mu, log_var)
loss_signal = calculate_ECG_reconstruction_loss(y_ECG, ECG_input)
loss = loss_seg + args.lamda_KL*KL_loss
check_grad = False
if check_grad:
print(loss_seg)
print(loss_signal)
print(KL_loss)
print(loss.requires_grad)
print(loss_seg.requires_grad)
print(KL_loss.requires_grad)
print(loss_signal.requires_grad)
visual_check = False
if visual_check:
gd_ECG = ECG_input[0].cpu().detach().numpy()
y_ECG = y_ECG[0].cpu().detach().numpy()
ECG_visual_two(y_ECG, gd_ECG)
loss.backward()
optimizer.step()
f_train.write(str(loss.item()))
f_train.write('\n')
f_MI_train.write(str(loss_seg.item()))
f_MI_train.write('\n')
f_KL_train.write(str(KL_loss.item()))
f_KL_train.write('\n')
f_ecg_train.write(str(loss_signal.item()))
f_ecg_train.write('\n')
iter_count += 1
total_loss += loss.item()
if i % 50 == 0:
print("Training epoch {}/{}, iteration {}/{}: loss is {}".format(epoch, args.epochs, i, max_iter, loss.item()))
scheduler.step()
print("\033[96mTraining epoch {}/{}: avg loss = {}\033[0m".format(epoch, args.epochs, total_loss / iter_count))
# evaluation
network.eval()
with torch.no_grad():
total_loss, iter_count = 0, 0
for i, data in enumerate(val_dataloader, 1):
partial_input, ECG_input, gt_MI, partial_input_coarse = data
partial_input, ECG_input, gt_MI = partial_input.to(DEVICE), ECG_input.to(DEVICE), gt_MI.to(DEVICE)
partial_input_coarse = partial_input_coarse.to(DEVICE)
partial_input = partial_input.permute(0, 2, 1)
y_MI, y_ECG, mu, log_var = network(partial_input, ECG_input)
loss_seg, KL_loss = calculate_classify_loss(y_MI, gt_MI, mu, log_var)
loss_signal = calculate_ECG_reconstruction_loss(y_ECG, ECG_input)
loss = loss_seg + args.lamda_KL*KL_loss
total_loss += loss.item()
iter_count += 1
visual_check = False
if visual_check:
gd_ECG = ECG_input[0].cpu().detach().numpy()
y_ECG = y_ECG[0].cpu().detach().numpy()
ECG_visual_two(y_ECG, gd_ECG)
f_val.write(str(loss.item()))
f_val.write('\n')
f_MI_val.write(str(loss_seg.item()))
f_MI_val.write('\n')
f_KL_val.write(str(KL_loss.item()))
f_KL_val.write('\n')
f_ecg_val.write(str(loss_signal.item()))
f_ecg_val.write('\n')
mean_loss = total_loss / iter_count
print("\033[35mValidation epoch {}/{}, loss is {}\033[0m".format(epoch, args.epochs, mean_loss))
# records the best model and epoch
if mean_loss < minimum_loss:
best_epoch = epoch
minimum_loss = mean_loss
strNetSaveName = 'net_model_classify.pkl'
# strNetSaveName = 'net_with_%d.pkl' % epoch
torch.save(network.state_dict(), args.log_dir + '/' + strNetSaveName)
print("\033[4;37mBest model (lowest loss) in epoch {}\033[0m".format(best_epoch))
lossplot(lossfile_train, lossfile_val)
def train(args):
DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
# DEVICE = torch.device('cpu')
train_dataset = LoadDataset(path=args.partial_root, num_input=args.num_input, split='train')
val_dataset = LoadDataset(path=args.partial_root, num_input=args.num_input, split='val')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
cudnn.benchmark = True
network = InferenceNet(in_ch=args.in_ch, out_ch=args.out_ch, num_input=args.num_input, z_dims=args.z_dims)
if args.model is not None:
print('Loaded trained model from {}.'.format(args.model))
network.load_state_dict(torch.load(args.model))
else:
print('Begin training new model.')
network.to(DEVICE)
optimizer = optim.Adam(network.parameters(), lr=args.base_lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_steps, gamma=args.lr_decay_rate)
max_iter = int(len(train_dataset) / args.batch_size + 0.5)
minimum_loss = 1e4
best_epoch = 0
lossfile_train = args.log_dir + "/training_loss.txt"
lossfile_val = args.log_dir + "/val_loss.txt"
lossfile_geometry_train = args.log_dir + "/training_calculate_inference_loss.txt"
lossfile_geometry_val = args.log_dir + "/val_calculate_inference_loss.txt"
lossfile_compactness_train = args.log_dir + "/training_compactness_loss.txt"
lossfile_compactness_val = args.log_dir + "/val_compactness_loss.txt"
lossfile_KL_train = args.log_dir + "/training_KL_loss.txt"
lossfile_KL_val = args.log_dir + "/val_KL_loss.txt"
lossfile_PC_train = args.log_dir + "/training_PC_loss.txt"
lossfile_PC_val = args.log_dir + "/val_PC_loss.txt"
lossfile_ecg_train = args.log_dir + "/training_ecg_loss.txt"
lossfile_ecg_val = args.log_dir + "/val_ecg_loss.txt"
lossfile_RVp_train = args.log_dir + "/training_RVp_loss.txt"
lossfile_RVp_val = args.log_dir + "/val_RVp_loss.txt"
lossfile_size_train = args.log_dir + "/training_MIsize_loss.txt"
lossfile_size_val = args.log_dir + "/val_MIsize_loss.txt"
lamda_KL = args.lamda_KL
for epoch in range(1, args.epochs + 1):
if ((epoch % 25) == 0) and (epoch != 0):
lossplot_detailed(lossfile_train, lossfile_val, lossfile_geometry_train, lossfile_geometry_val, lossfile_KL_train, lossfile_KL_val, lossfile_compactness_train, lossfile_compactness_val, lossfile_PC_train, lossfile_PC_val, lossfile_ecg_train, lossfile_ecg_val, lossfile_RVp_train, lossfile_RVp_val, lossfile_size_train, lossfile_size_val)
f_train = open(lossfile_train, 'a') # a: additional writing; w: overwrite writing
f_val = open(lossfile_val, 'a')
f_MI_train = open(lossfile_geometry_train, 'a') # a: additional writing; w: overwrite writing
f_MI_val = open(lossfile_geometry_val, 'a')
f_compactness_train = open(lossfile_compactness_train, 'a') # a: additional writing; w: overwrite writing
f_compactness_val = open(lossfile_compactness_val, 'a')
f_KL_train = open(lossfile_KL_train, 'a') # a: additional writing; w: overwrite writing
f_KL_val = open(lossfile_KL_val, 'a')
f_PC_train = open(lossfile_PC_train, 'a') # a: additional writing; w: overwrite writing
f_PC_val = open(lossfile_PC_val, 'a')
f_ecg_train = open(lossfile_ecg_train, 'a') # a: additional writing; w: overwrite writing
f_ecg_val = open(lossfile_ecg_val, 'a')
f_size_train = open(lossfile_size_train, 'a') # a: additional writing; w: overwrite writing
f_size_val = open(lossfile_size_val, 'a')
f_RVp_train = open(lossfile_RVp_train, 'a') # a: additional writing; w: overwrite writing
f_RVp_val = open(lossfile_RVp_val, 'a')
# if epoch != 0:
# if lamda_KL < 1:
# lamda_KL = 0.1*epoch*args.lamda_KL
# else:
# lamda_KL = 0.1
# training
network.train()
total_loss, iter_count = 0, 0
for i, data in enumerate(train_dataloader, 1):
partial_input, ECG_input, gt_MI, partial_input_coarse, MI_type = data
partial_input, ECG_input, gt_MI = partial_input.to(DEVICE), ECG_input.to(DEVICE), gt_MI.to(DEVICE)
partial_input_coarse = partial_input_coarse.to(DEVICE)
partial_input = partial_input.permute(0, 2, 1)
optimizer.zero_grad()
y_MI, y_coarse, y_detail, y_ECG, mu, log_var = network(partial_input[:, 0:7, :], ECG_input)
loss_seg, loss_compactness, loss_MI_RVpenalty, loss_MI_size, KL_loss = calculate_inference_loss(y_MI, gt_MI, mu, log_var, partial_input)
loss_geo, loss_signal = calculate_reconstruction_loss(y_coarse, y_detail, partial_input_coarse, partial_input, y_ECG, ECG_input)
loss = loss_seg + args.lamda_compact*loss_compactness + args.lamda_RVp*loss_MI_RVpenalty + args.lamda_MIsize*loss_MI_size + args.lamda_KL*KL_loss + args.lamda_recon*loss_geo # + args.lamda_recon*loss_signal #
check_grad = False
if check_grad:
print(loss.requires_grad)
print(loss_seg.requires_grad)
print(loss_compactness.requires_grad)
print(loss_MI_RVpenalty.requires_grad)
print(KL_loss.requires_grad)
print(loss_MI_size.requires_grad)
print(loss_geo.requires_grad)
print(loss_signal.requires_grad)
visual_check = False
if visual_check:
y_predict = y_MI[0].cpu().detach().numpy()
y_gd = gt_MI[0].cpu().detach().numpy()
x_input = partial_input[0].cpu().detach().numpy()
y_predict_argmax = np.argmax(y_predict, axis=0)
visualize_PC_with_twolabel(x_input[0:3, 0:args.num_input].transpose(), y_predict_argmax, y_gd, filename='RNmap_gd_pre.jpg')
loss.backward()
optimizer.step()
f_train.write(str(loss.item()))
f_train.write('\n')
f_MI_train.write(str(loss_seg.item()))
f_MI_train.write('\n')
f_compactness_train.write(str(loss_compactness.item()))
f_compactness_train.write('\n')
f_KL_train.write(str(KL_loss.item()))
f_KL_train.write('\n')
f_PC_train.write(str(loss_geo.item()))
f_PC_train.write('\n')
f_ecg_train.write(str(loss_signal.item()))
f_ecg_train.write('\n')
f_size_train.write(str((loss_MI_size.item())))
f_size_train.write('\n')
f_RVp_train.write(str(loss_MI_RVpenalty.item()))
f_RVp_train.write('\n')
iter_count += 1
total_loss += loss.item()
if i % 50 == 0:
print("Training epoch {}/{}, iteration {}/{}: loss is {}".format(epoch, args.epochs, i, max_iter, loss.item()))
scheduler.step()
print("\033[96mTraining epoch {}/{}: avg loss = {}\033[0m".format(epoch, args.epochs, total_loss / iter_count))
# evaluation
network.eval()
with torch.no_grad():
total_loss, iter_count = 0, 0
for i, data in enumerate(val_dataloader, 1):
partial_input, ECG_input, gt_MI, partial_input_coarse, MI_type = data
partial_input, ECG_input, gt_MI = partial_input.to(DEVICE), ECG_input.to(DEVICE), gt_MI.to(DEVICE)
partial_input_coarse = partial_input_coarse.to(DEVICE)
partial_input = partial_input.permute(0, 2, 1)
y_MI, y_coarse, y_detail, y_ECG, mu, log_var = network(partial_input[:, 0:7, :], ECG_input)
loss_seg, loss_compactness, loss_MI_RVpenalty, loss_MI_size, KL_loss = calculate_inference_loss(y_MI, gt_MI, mu, log_var, partial_input)
loss_geo, loss_signal = calculate_reconstruction_loss(y_coarse, y_detail, partial_input_coarse, partial_input, y_ECG, ECG_input)
loss = loss_seg + args.lamda_compact*loss_compactness + args.lamda_RVp*loss_MI_RVpenalty + args.lamda_MIsize*loss_MI_size + args.lamda_KL*KL_loss + args.lamda_recon*loss_geo # + args.lamda_recon*loss_signal #
total_loss += loss.item()
iter_count += 1
if ((epoch % 25) == 0) and (epoch != 0) and (i == 1):
y_predict = y_MI[0].cpu().detach().numpy()
y_gd = gt_MI[0].cpu().detach().numpy()
x_input = partial_input[0].cpu().detach().numpy()
y_predict_argmax = np.argmax(y_predict, axis=0)
visualize_PC_with_twolabel(x_input[0:3, 0:args.num_input].transpose(), y_predict_argmax, y_gd, filename='RNmap_gd_pre.jpg')
f_val.write(str(loss.item()))
f_val.write('\n')
f_MI_val.write(str(loss_seg.item()))
f_MI_val.write('\n')
f_compactness_val.write(str(loss_compactness.item()))
f_compactness_val.write('\n')
f_KL_val.write(str(KL_loss.item()))
f_KL_val.write('\n')
f_PC_val.write(str(loss_geo.item()))
f_PC_val.write('\n')
f_ecg_val.write(str(loss_signal.item()))
f_ecg_val.write('\n')
f_size_val.write(str(loss_MI_size.item()))
f_size_val.write('\n')
f_RVp_val.write(str(loss_MI_RVpenalty.item()))
f_RVp_val.write('\n')
mean_loss = total_loss / iter_count
print("\033[35mValidation epoch {}/{}, loss is {}\033[0m".format(epoch, args.epochs, mean_loss))
# records the best model and epoch
if mean_loss < minimum_loss:
best_epoch = epoch
minimum_loss = mean_loss
strNetSaveName = 'net_model.pkl'
# strNetSaveName = 'net_with_%d.pkl' % epoch
torch.save(network.state_dict(), args.log_dir + '/' + strNetSaveName)
print("\033[4;37mBest model (lowest loss) in epoch {}\033[0m".format(best_epoch))
lossplot(lossfile_train, lossfile_val)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--partial_root', type=str, default='./Big_data_inference/meta_data/UKB_clinical_data/')
parser.add_argument('--model', type=str, default=None) #'log/net_model.pkl'
parser.add_argument('--in_ch', type=int, default=3+4) # coordinate dimension + label index
parser.add_argument('--out_ch', type=int, default=3) # 3scar, BZ, normal/ 18 for ecg-based classification
parser.add_argument('--z_dims', type=int, default=16)
parser.add_argument('--num_input', type=int, default=1024*4)
parser.add_argument('--batch_size', type=int, default=4) # 4
parser.add_argument('--lamda_recon', type=float, default=1) # 1
parser.add_argument('--lamda_KL', type=float, default=1e-2) # 1e-2
parser.add_argument('--lamda_MIsize', type=float, default=1) # 1
parser.add_argument('--lamda_RVp', type=float, default=1) # 1
parser.add_argument('--lamda_compact', type=float, default=1) # 1
parser.add_argument('--base_lr', type=float, default=1e-4) #1e-4
parser.add_argument('--lr_decay_steps', type=int, default=50)
parser.add_argument('--lr_decay_rate', type=float, default=0.5)
parser.add_argument('--weight_decay', type=float, default=1e-3) #1e-3
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--log_dir', type=str, default='log')
args = parser.parse_args()
train(args)