[390c2f]: / Cobiveco / @cobiveco / computeApicobasal.m

Download this file

211 lines (178 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function computeApicobasal(o)
if ~o.available.rotational
o.computeRotational;
end
o.printStatus('Computing apicobasal coordinate...');
t = toc;
% parameters
numTmVal = 10; % number of contour lines in transmural direction
numRtVal = 48; % number of contour lines in rotational direction, ideally a multiple of 6
numClPoints = 100; % number of points per contour line after resampling using cubic splines
% compute contour surfaces of tm (cs)
tmp = vtkDeleteDataArrays(o.m1.vol);
tmp.pointData.tm = o.m1.tm;
tmVal = linspace(0.5/numTmVal, 1-0.5/numTmVal, numTmVal);
cs = vtkContourFilter(tmp, 'points', 'tm', tmVal);
% assign regions to cs
cs = vtkConnectivityFilter(cs);
cs.pointData.csRegion = cs.pointData.RegionId;
cs = vtkDeleteDataArrays(cs, {'pointData.csRegion'});
% interpolate abLaplace from o.m2.vol to cs
Mcs = baryInterpMat(o.m2.vol.points, o.m2.vol.cells, cs.points);
cs.pointData.abLaplace = Mcs * o.m2.abLaplace;
if o.cfg.exportLevel > 2
vtkWrite(cs, sprintf('%sabContourSurfaces.vtp', o.cfg.outPrefix));
end
% find apex point for each csRegion
csRegions = unique(cs.pointData.csRegion);
apexPoints = NaN(numel(csRegions),3);
for i = 1:numel(csRegions)
pointIds = find(cs.pointData.csRegion==csRegions(i));
[~,minId] = min(cs.pointData.abLaplace(pointIds));
apexPoints(i,:) = cs.points(pointIds(minId),:);
end
% compute contour lines of rtSin (rtSinCl)
tmp = cs;
tmp.pointData.rtSin = Mcs * o.m2.rtSin;
rtSinVal = sin(pi*linspace(-0.25, 0.25, round(numRtVal/2)+1));
rtSinCl = vtkContourFilter(tmp, 'points', 'rtSin', rtSinVal);
rtSinCl.pointData = rmfield(rtSinCl.pointData, 'rtSin');
% compute contour lines of rtCos (rtCosCl)
tmp = cs;
tmp.pointData.rtCos = Mcs * o.m2.rtCos;
rtCosVal = rtSinVal(2:end-1);
rtCosCl = vtkContourFilter(tmp, 'points', 'rtCos', rtCosVal);
rtCosCl.pointData = rmfield(rtCosCl.pointData, 'rtCos');
% combine rtSin and rtCos contour lines (cl)
cl = vtkAppendPolyData({rtSinCl, rtCosCl});
% exclude points close to the apex to split the contour lines into two parts
% apexRadius needs to be large enough for each contour line to be splitted
apexRadius = 3*o.m1.meanEdgLen;
cl.pointData.clRegion = zeros(size(cl.points,1),1);
for i = 1:numel(csRegions)
pointIds = find(cl.pointData.csRegion==csRegions(i));
ids = rangesearch(cl.points(pointIds,:), apexPoints(i,:), apexRadius);
cl.pointData.clRegion(pointIds(ids{1})) = -1;
end
cl = vtkThreshold(cl, 'points', 'clRegion', [0 inf]);
% identify separate contour lines --> clRegion
cl = vtkConnectivityFilter(cl);
cl.pointData.clRegion = cl.pointData.RegionId;
cl.pointData = rmfield(cl.pointData, 'RegionId');
cl = rmfield(cl, 'cellData');
% exclude too short contour lines based on values of abLaplace
clRegions = unique(cl.pointData.clRegion);
abLaplaceMin = NaN(numel(clRegions),1);
abLaplaceMax = NaN(numel(clRegions),1);
pointIds = cell(numel(clRegions),1);
for i = 1:numel(clRegions)
pointIds{i} = find(cl.pointData.clRegion==clRegions(i));
abLaplaceVal = cl.pointData.abLaplace(pointIds{i});
abLaplaceMin(i) = min(abLaplaceVal);
abLaplaceMax(i) = max(abLaplaceVal);
end
abLaplaceMinThresh = min(abLaplaceMin) + 2*(median(abLaplaceMin)-min(abLaplaceMin));
abLaplaceMaxThresh = 0.99;
for i = 1:numel(clRegions)
if abLaplaceMin(i) > abLaplaceMinThresh || abLaplaceMax(i) < abLaplaceMaxThresh
cl.pointData.clRegion(pointIds{i}) = -1;
end
end
cl = vtkThreshold(cl, 'points', 'clRegion', [0 inf]);
% reassign clRegion
cl = vtkConnectivityFilter(cl);
cl.pointData.clRegion = cl.pointData.RegionId;
cl.pointData = rmfield(cl.pointData, 'RegionId');
cl = rmfield(cl, 'cellData');
if o.cfg.exportLevel > 2
vtkWrite(cl, sprintf('%sabContourLines.vtp', o.cfg.outPrefix));
end
% use cubic smoothing spline to smooth and resample the contour lines
% and to compute the normalized distance along the contour lines (abSmoothCl)
clRegions = unique(cl.pointData.clRegion);
splineMisfit = 5e-4 * norm(mean(double(o.m1.sur.points(o.m1.sur.pointData.class==1,:)),1)-mean(apexPoints,1));
smoothClPoints = NaN(numel(clRegions)*numClPoints, 3);
abSmoothCl = zeros(numel(clRegions)*numClPoints, 1);
abLength = abSmoothCl;
for i = 1:numel(clRegions)
pointIds = find(cl.pointData.clRegion==clRegions(i));
[~,sortInd] = sort(cl.pointData.abLaplace(pointIds));
apexPoint = apexPoints(csRegions==cl.pointData.csRegion(pointIds(sortInd(1))),:);
P = [apexPoint; double(cl.points(pointIds(sortInd),:))];
d = sqrt(sum(diff(P,1,1).^2,2));
ind = d < 1e-4*o.m1.meanEdgLen;
P(ind,:) = [];
d(ind) = [];
d = [0; cumsum(d)];
w = [100; ones(size(P,1)-1,1)];
tol = numel(d)*splineMisfit^2;
sp = spaps(d, P', tol, w);
P = fnval(sp, linspace(min(d), max(d), numClPoints))';
d = [0; cumsum(sqrt(sum(diff(P,1,1).^2,2)))];
ind = (i-1)*numClPoints+1:i*numClPoints;
smoothClPoints(ind,:) = P;
abSmoothCl(ind) = d/max(d);
abLength(ind) = max(d);
end
if o.cfg.exportLevel > 2
clSmooth.points = single(smoothClPoints);
clSmooth.pointData.ab = single(abSmoothCl);
clSmooth.cells = int32(repmat(reshape(repmat(0:numClPoints:numel(clRegions)*numClPoints-1,numClPoints-1,1),[],1),1,2) + repmat([(1:numClPoints-1)' (2:numClPoints)'],numel(clRegions),1));
clSmooth.cellTypes = repmat(uint8(3), size(clSmooth.cells,1), 1);
vtkWrite(clSmooth, sprintf('%sabContourLinesSmooth.vtp', o.cfg.outPrefix));
end
% BEGIN: Laplacian extrapolation of abSmoothCl to o.m1.vol
% ||M ab - abSmoothCl|| forces extrapolated values to fit to contour values
M = baryInterpMat(o.m1.vol.points, o.m1.vol.cells, smoothClPoints);
% ||E ab - 1|| forces extrapolated values to 1 at the base
baseIds = double(o.m1.surToVol(o.m1.sur.pointData.class==1));
baseVal = ones(numel(baseIds),1);
E = sparse(1:numel(baseIds), baseIds, ones(size(baseIds)), numel(baseIds), size(o.m1.vol.points,1));
eta = (numel(abSmoothCl)/(numel(baseIds)))^2;
% ||L ab|| forces extrapolated values to be smooth
L = o.m1.massMat \ o.m1.L;
% Initial guess for ab using nearest-neighbor interpolation
ab = abSmoothCl(knnsearch(smoothClPoints, o.m1.vol.points, 'NSMethod','kdtree'));
% Initial guess for lambda based on the relation between lambda and the
% half-width at half-maximum of the point spread function of the operator
% inv(speye(size(L))+lambda*(L'*L))
hwhm = mean(abLength)/100;
lambda = 1.58*hwhm^3.57;
lambda = numel(abSmoothCl)/numel(ab)*lambda;
fprintf('\n0\t%.3e\n', lambda);
b = M'*abSmoothCl + eta*E'*baseVal;
MM = M'*M + eta*(E'*E);
LL = L'*L;
extrapMisfit = o.cfg.abExtrapSmooth/100;
try
[~,flag,iter] = secant(@objFun, 1e-1*lambda, lambda, 1e-2*extrapMisfit);
if flag
warning('Secant stopped at iteration %i without converging.', iter);
end
catch err
disp(getReport(err, 'extended', 'hyperlinks', 'off'));
warning('Optimization of lambda failed. Using default value instead.');
objFun(lambda);
end
function objVal = objFun(lambda)
A = MM + lambda*LL;
icMat = ichol_autocomp(A, struct('michol','on'));
[ab, flag, relres, iter] = pcg(A, b, o.cfg.tol, o.cfg.maxit, icMat, icMat', ab);
if flag
error('pcg failed at iteration %i with flag %i and relative residual %.1e.', iter, flag, relres);
end
objVal = rms(M*ab-abSmoothCl)-extrapMisfit;
end
% END: Laplacian extrapolation
o.m1.ab = min(max(ab,0),1);
o.m0.ab = min(max(o.m1.M*o.m1.ab,0),1);
o.result.pointData.ab = single(o.m0.ab);
if o.cfg.exportLevel > 1
o.m1.debug.pointData.ab = single(o.m1.ab);
vtkWrite(o.m1.debug, sprintf('%sdebug1.vtu', o.cfg.outPrefix));
o.m0.debug.pointData.ab = single(o.m0.ab);
vtkWrite(o.m0.debug, sprintf('%sdebug0.vtu', o.cfg.outPrefix));
end
o.printStatus(sprintf('%.1f seconds\n', toc-t), true);
o.available.apicobasal = true;
end