[390c2f]: / loss.py

Download this file

374 lines (286 with data), 17.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from utils import visualize_PC_with_label
import torch_geometric.transforms as T
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
from scipy.spatial import KDTree
from utils import visualize_PC_with_label
# from distance.chamfer_distance import ChamferDistanceFunction
# from distance.emd_module import emdFunction
def dtw_loss(ecg1, ecg2): # to do: plot the curve of x-y axis.
"""
计算两个ECG序列之间的Dynamic Time Warping(DTW)损失。
参数:
- ecg1: 第一个ECG序列,形状为 (batch_size, seq_len1, num_features)
- ecg2: 第二个ECG序列,形状为 (batch_size, seq_len2, num_features)
返回:
- dtw_loss: DTW损失,标量张量
"""
batch_size, seq_len1, num_features = ecg1.size()
_, seq_len2, _ = ecg2.size()
# 计算两个ECG序列之间的距离矩阵
distance_matrix = torch.cdist(ecg1, ecg2) # 形状为 (batch_size, seq_len1, seq_len2)
# 初始化动态规划表格
torch.autograd.set_detect_anomaly(True)
dp = torch.zeros((batch_size, seq_len1, seq_len2)).to(ecg1.device)
# 填充动态规划表格
dp[:, 0, 0] = distance_matrix[:, 0, 0]
for i in range(1, seq_len1):
dp[:, i, 0] = distance_matrix[:, i, 0] + dp[:, i-1, 0].clone()
for j in range(1, seq_len2):
dp[:, 0, j] = distance_matrix[:, 0, j] + dp[:, 0, j-1].clone()
for i in range(1, seq_len1):
for j in range(1, seq_len2):
dp[:, i, j] = distance_matrix[:, i, j] + torch.min(torch.stack([
dp[:, i-1, j].clone(),
dp[:, i, j-1].clone(),
dp[:, i-1, j-1].clone()
], dim=1), dim=1).values
dtw_loss = torch.mean(dp[:, seq_len1-1, seq_len2-1] / (seq_len1 + seq_len2))
return dtw_loss
def calculate_classify_loss(y_MI, gt_MI_label, mu, log_var):
loss_func_CE = nn.CrossEntropyLoss() # weight=PC_weight
loss_CE = loss_func_CE(y_MI, gt_MI_label)
KL_loss = -0.5 * torch.sum(1 + log_var - torch.square(mu) - torch.exp(log_var))
return loss_CE, KL_loss
def calculate_ECG_reconstruction_loss(y_signal, signal_input):
y_signal = y_signal.squeeze(1)
loss_signal = torch.mean(torch.square(y_signal-signal_input))
return loss_signal
def calculate_reconstruction_loss(y_coarse, y_detail, coarse_gt, dense_gt, y_signal, signal_input):
dense_gt = dense_gt.permute(0, 2, 1)
y_signal = y_signal.squeeze(1)
loss_coarse = calculate_chamfer_distance(y_coarse[:, :, 0:3], coarse_gt[:, :, 0:3]) + calculate_chamfer_distance(y_coarse[:, :, 3:], coarse_gt[:, :, 3:7])
loss_fine = calculate_chamfer_distance(y_detail[:, :, 0:3], dense_gt[:, :, 0:3]) + calculate_chamfer_distance(y_coarse[:, :, 3:], coarse_gt[:, :, 3:7])
# loss_coarse_emd = calculate_emd(y_coarse[:, :, 0:3], coarse_gt[:, :, 0:3]) + calculate_emd(y_coarse[:, :, 3:], coarse_gt[:, :, 3:])
# Per-class chamfer losses as reconstruction loss
# loss_coarse = per_class_PCdist(y_coarse, coarse_gt, dist_type='chamfer') + per_class_PCdist(y_coarse, coarse_gt, dist_type = 'EDM')
# loss_fine = per_class_PCdist(y_detail, dense_gt, dist_type='chamfer')
loss_signal = torch.mean(torch.square(y_signal-signal_input))
loss_DTW = dtw_loss(y_signal, signal_input) # dynamic time warping
# ECG_dist = torch.sqrt(torch.sum((y_signal - signal_input) ** 2))
# PC_dist = torch.sqrt(torch.sum((y_coarse[:, :, 3:7] - coarse_gt[:, :, 3:7]) ** 2)) + torch.sqrt(torch.sum((y_detail[:, :, 3:7] - dense_gt[:, :, 3:7]) ** 2))
return loss_coarse + 5*loss_fine, loss_signal + loss_DTW #0.5*(loss_coarse + loss_fine), loss_signal + loss_DTW #
def evaluate_AHA_localization(predicted_center_id, predicted_covered_ids, gt_center_id, gt_covered_ids, center_distance):
# Center ID Comparison
center_id_match = predicted_center_id == gt_center_id
center_id_score = 1 if center_id_match else 0
# Covered ID Comparison
common_ids = set(predicted_covered_ids.tolist()) & set(gt_covered_ids.tolist())
intersection = len(common_ids)
union = len(set(predicted_covered_ids.tolist()).union(set(gt_covered_ids.tolist())))
iou_score = intersection / union if union != 0 else 0
# Weighting
center_id_weight = 0.5
center_distance_weight = 0.3
covered_id_weight = 0.2
# Overall Evaluation Metric
evaluation_metric = (center_id_weight * center_id_score) + (covered_id_weight * iou_score) + (center_distance_weight*(1-center_distance))
return evaluation_metric
def evaluate_pointcloud(predictions, target, partial_input, n_classes=3):
# To address the issue of class imbalance and obtain a more comprehensive evaluation of model performance,
# you may consider using other metrics such as precision, recall (or sensitivity), F1-score, and area under the
# receiver operating characteristic (ROC) curve. These metrics provide a more nuanced evaluation of model performance,
# taking into account both true positive and false positive/negative rates for each class separately.
PC_xyz = partial_input[:, 0:3, :].permute(0, 2, 1).squeeze(0)
AHA_id = partial_input[:, 7, :].squeeze(0)
targets = F.one_hot(target, n_classes).permute(0, 2, 1)
"""Function to evaluate point cloud predictions with multiple classes"""
assert predictions.shape == targets.shape, "Input shapes must be the same"
assert predictions.shape[0] == 1, "Batch size must be 1"
# Convert predictions and targets to boolean values based on threshold
# predictions = torch.ge(predictions, threshold).bool()
predictions = one_hot_argmax(predictions).bool()
targets = targets.bool().squeeze(0)
MI_size_pre = torch.sum(predictions, dim=1).tolist()
MI_size_gd = torch.sum(targets, dim=1).tolist()
y_MI_center = torch.mean(PC_xyz[predictions[1]], dim=0)
gt_MI_center = torch.mean(PC_xyz[targets[1]], dim=0)
# calculate and compare the covered AHA IDs and the centered AHA ID of prediction and ground truth
kdtree = KDTree(PC_xyz.cpu().detach().numpy())
distance_pre, index_pre = kdtree.query(y_MI_center.cpu().detach().numpy())
distance_gd, index_gd = kdtree.query(gt_MI_center.cpu().detach().numpy()) # to do: check whether its AHA=0
max_distance = torch.max(torch.sqrt(torch.sum((PC_xyz[AHA_id!=0.0][:, None] - PC_xyz[AHA_id!=0.0]) ** 2, dim=2)))
if index_pre == 4096:
center_distance = 1
AHA_center_pre = 0
print('no valid nearest neighbor was found')
else:
center_distance = (torch.sqrt(torch.sum((PC_xyz[index_pre] - PC_xyz[index_gd]) ** 2))/max_distance).cpu().detach().numpy()
AHA_center_pre = AHA_id[index_pre]
AHA_center_gd = AHA_id[index_gd]
AHA_list_pre, AHA_list_gd = torch.unique(AHA_id[predictions[1]]), torch.unique(AHA_id[targets[1]])
AHA_loc_score = evaluate_AHA_localization(AHA_center_pre, AHA_list_pre, AHA_center_gd, AHA_list_gd, center_distance)
# Calculate True Positives (TP), False Positives (FP), and False Negatives (FN) for each class
tp = torch.sum(predictions & targets, dim=1).tolist()
fp = torch.sum(predictions & ~targets, dim=1).tolist()
fn = torch.sum(~predictions & targets, dim=1).tolist()
tn = torch.sum(~predictions & ~targets, dim=1).tolist()
# Calculate Accuracy, Precision, Recall (Sensitivity), Specificity, and F1-score for each class
accuracy = sum(tp) / (sum(tp) + sum(fp) + sum(fn) + sum(tn))
precision = [tp[i] / (tp[i] + fp[i]) if (tp[i] + fp[i]) > 0 else 0.0 for i in range(n_classes)]
recall = [tp[i] / (tp[i] + fn[i]) if (tp[i] + fn[i]) > 0 else 0.0 for i in range(n_classes)]
specificity = [tn[i] / (fp[i] + tn[i]) if (fp[i] + tn[i]) > 0 else 0.0 for i in range(n_classes)]
f1_score = [2 * (precision[i] * recall[i]) / (precision[i] + recall[i]) if (precision[i] + recall[i]) > 0 else 0.0 for i in range(n_classes)]
roc_auc = [roc_auc_score(targets[i, :].detach().cpu().numpy(), predictions[i, :].detach().cpu().numpy()) for i in range(n_classes)]
visualize_ROC = False
if visualize_ROC:
# Create a figure and axes
fig, ax = plt.subplots()
# Plot ROC curve for each class
for i in range(len(roc_auc)):
ax.plot([0, 1], [0, 1], 'k--') # Plot diagonal line
ax.plot(1 - specificity[i], recall[i], label='Class {} (AUC = {:.2f})'.format(i, roc_auc[i]))
# Set labels and title
ax.set_xlabel('False Positive Rate (1 - Specificity)')
ax.set_ylabel('True Positive Rate (Sensitivity / Recall)')
ax.set_title('Receiver Operating Characteristic (ROC) Curve')
# Set legend
ax.legend()
# Show the plot
plt.show()
# precision, recall (or sensitivity), F1-score, roc_auc
return precision, recall, f1_score, roc_auc, MI_size_pre, MI_size_gd, center_distance, AHA_loc_score
def calculate_chamfer_distance_old(x, y):
"""
Computes the Chamfer distance between two point clouds.
Args:
x: Tensor of shape (n_batch, n_point, n_label).
y: Tensor of shape (n_batch, n_point, n_label).
Returns:
chamfer_distance: Tensor of shape (1,)
"""
x_expand = x.unsqueeze(2) # Shape: (n_batch, n_point, 1, n_label)
y_expand = y.unsqueeze(1) # Shape: (n_batch, 1, n_point, n_label)
diff = x_expand - y_expand
dist = torch.sum(diff**2, dim=-1) # Shape: (n_batch, n_point, n_point)
dist_x2y = torch.min(dist, dim=2).values # Shape: (n_batch, n_point)
dist_y2x = torch.min(dist, dim=1).values # Shape: (n_batch, n_point)
chamfer_distance = torch.mean(dist_x2y, dim=1) + torch.mean(dist_y2x, dim=1) # Shape: (n_batch,)
return torch.mean(chamfer_distance)
def calculate_chamfer_distance(x, y):
dist_x_y = torch.cdist(x, y)
min_dist_x_y, _ = torch.min(dist_x_y, dim=1)
min_dist_y_x, _ = torch.min(dist_x_y, dim=0)
chamfer_distance = torch.mean(min_dist_x_y) + torch.mean(min_dist_y_x)
return torch.mean(chamfer_distance)
def per_class_PCdist(pcd1, pcd2, dist_type='EDM', n_class=3):
# Extract points from prediction and ground truth for each class
LV_endo_pcd1, LV_epi_pcd1, RV_endo_pcd1 = torch.split(pcd1, n_class, dim=2)
LV_endo_pcd2, LV_epi_pcd2, RV_endo_pcd2 = torch.split(pcd2, n_class, dim=2)
# Note that ChamferDistance has O(n log n) complexity, while EMD has O(n2), which is too expensive to compute during training
if dist_type == 'EDM':
PCdist = calculate_emd
else:
PCdist = calculate_chamfer_distance
LV_endo_loss = PCdist(LV_endo_pcd1, LV_endo_pcd2)
LV_epi_loss = PCdist(LV_epi_pcd1, LV_epi_pcd2)
RV_endo_loss = PCdist(RV_endo_pcd1, RV_endo_pcd2)
combined_loss = (LV_endo_loss + LV_epi_loss + RV_endo_loss) / n_class
return combined_loss
def calculate_emd(x1, x2, eps=1e-8, norm=1):
"""
Calculates the Earth Mover's Distance (EMD) between two batches of point clouds.
Args:
- x1: A tensor of shape (batch_size, num_points, num_dims) representing the first batch of point clouds.
- x2: A tensor of shape (batch_size, num_points, num_dims) representing the second batch of point clouds.
- eps: A small constant added to the distance matrix to prevent numerical instability.
- norm: The order of the norm used to calculate the distance matrix (default is L1 norm).
Returns:
- A tensor of shape (batch_size,) representing the EMD between each pair of point clouds in the batches.
"""
batch_size, num_points, num_dims = x1.size()
# Calculate distance matrix between points in each batch
dist_mat = torch.cdist(x1, x2, p=norm)
# Initialize flow matrix with zeros
flow = torch.zeros(batch_size, num_points, num_points, requires_grad=True).to(x1.get_device())
# Compute EMD using PyTorch's Sinkhorn algorithm
for i in range(batch_size):
flow[i] = F.sinkhorn_knopp(dist_mat[i], eps=eps)
# Calculate total EMD for each pair of point clouds in the batches
emd = torch.sum(flow * dist_mat, dim=(1, 2))
return emd
def calculate_inference_loss(y_MI, gt_MI_label, mu, log_var, partial_input):
PC_xyz = partial_input[:, 0:3, :]
PC_tv = torch.where((partial_input[:, 7, :] == 0.0) & (partial_input[:, 6, :] > 0), 1, 0)
# x_input = partial_input[0].cpu().detach().numpy()
# x_input_lab = PC_tv[0].cpu().detach().numpy().astype(int)
# visualize_PC_with_label(x_input[0:3, :].transpose(), x_input_lab, filename='RNmap_pre.pdf')
class_weights = torch.FloatTensor([1, 10, 10]).to(y_MI.get_device())
loss_func_CE = nn.CrossEntropyLoss() # weight=class_weights
y_MI_label = torch.argmax(y_MI, dim=1)
loss_compactness, loss_MI_size, loss_MI_RVpenalty = calculate_MI_distribution_loss(y_MI_label, gt_MI_label, PC_xyz.permute(0, 2, 1), PC_tv)
loss_CE = loss_func_CE(y_MI, gt_MI_label)
Dice = calculate_Dice(y_MI, gt_MI_label, num_classes=3)
loss_Dice = torch.sum((1.0-Dice) * class_weights)
KL_loss = -0.5 * torch.sum(1 + log_var - torch.square(mu) - torch.exp(log_var))
return loss_CE + 0.1*loss_Dice, loss_compactness, loss_MI_RVpenalty, loss_MI_size, KL_loss
def calculate_MI_distribution_loss(y_MI_label, gt_MI_label, PC_xyz, PC_tv):
"""
计算点云数据的compactness
Args:
point_cloud: 点云数据,shape为(B, N, 3), only work when B=1
Returns:
compactness: 点云数据的compactness
"""
y_MI_label_mask = torch.where((y_MI_label % 3) == 0, 0, 1).bool()
gt_MI_label_mask = torch.where((gt_MI_label % 3) == 0, 0, 1).bool()
compactness_sum = torch.tensor(0.0, requires_grad=True).to(y_MI_label.get_device())
MI_size_div_sum = torch.tensor(0.0, requires_grad=True).to(y_MI_label.get_device())
MI_RVpenalty_sum = torch.tensor(0.0, requires_grad=True).to(y_MI_label.get_device())
num_iter = 0
for i_batch in range(PC_xyz.shape[0]):
y_PC_xyz_masked = PC_xyz[i_batch][y_MI_label_mask[i_batch]]
gt_PC_xyz_masked = PC_xyz[i_batch][gt_MI_label_mask[i_batch]]
if gt_PC_xyz_masked.shape[0]==0 or y_PC_xyz_masked.shape[0]==0:
continue
MI_size_div = abs(gt_PC_xyz_masked.size(0) - y_PC_xyz_masked.size(0))/gt_PC_xyz_masked.size(0)
MI_size_div_sum = MI_size_div_sum.add(torch.tensor(MI_size_div, dtype=torch.float32).to(y_MI_label.get_device()))
MI_RVpenalty = torch.sum(PC_tv[i_batch]*y_MI_label[i_batch])/y_PC_xyz_masked.shape[0]
MI_RVpenalty_sum = MI_RVpenalty_sum.add(MI_RVpenalty)
visual_check = False
if visual_check:
y_predict = y_MI_label_mask[i_batch].cpu().detach().numpy()
x_input = PC_xyz[i_batch].cpu().detach().numpy()
visualize_PC_with_label(x_input[y_predict], y_predict[y_predict], filename='RNmap_gd.jpg')
visualize_PC_with_label(x_input, y_predict, filename='RNmap_pre.jpg')
y_MI_center = torch.mean(y_PC_xyz_masked, dim=0).unsqueeze(0)
gt_MI_center = torch.mean(gt_PC_xyz_masked, dim=0).unsqueeze(0)
y_dist_sq = torch.sum((y_PC_xyz_masked - y_MI_center) ** 2, dim=1)
gt_dist_sq = torch.sum((y_PC_xyz_masked - gt_MI_center) ** 2, dim=1)
# max_distance = torch.max(torch.sqrt(torch.sum((PC_xyz[AHA_id>0][:, None] - PC_xyz[AHA_id>0]) ** 2, dim=2)))
max_distance = torch.max(torch.sqrt(torch.sum((gt_PC_xyz_masked - gt_MI_center) ** 2, dim=1)))
y_compactness = torch.mean(torch.sqrt(y_dist_sq))/max_distance
gt_compactness = torch.mean(torch.sqrt(gt_dist_sq))/max_distance
compactness_sum = compactness_sum.add(y_compactness + gt_compactness)
num_iter += (num_iter + 1)
if num_iter != 0:
return compactness_sum/num_iter, MI_size_div_sum/num_iter, MI_RVpenalty_sum/num_iter
else:
return compactness_sum, MI_size_div_sum, MI_RVpenalty_sum
def calculate_Dice(inputs, target, num_classes):
target_onehot = F.one_hot(target, num_classes).permute(0, 2, 1)
eps = 1e-6
intersection = torch.sum(inputs * target_onehot, dim=[0, 2])
cardinality = torch.sum(inputs + target_onehot, dim=[0, 2])
Dice = (2.0 * intersection + eps) / (cardinality + eps)
return Dice
def one_hot_argmax(input_tensor):
"""
This function takes a PyTorch tensor as input and returns a tuple of two tensors:
- One-hot tensor: a binary tensor with the same shape as the input tensor, where the value 1
is placed in the position of the maximum element of the input tensor and 0 elsewhere.
- Argmax tensor: a tensor with the same shape as the input tensor, where the value is the index
of the maximum element of the input tensor.
"""
input_tensor = input_tensor.permute(0, 2, 1).squeeze(0)
max_indices = torch.argmax(input_tensor, dim=1)
one_hot_tensor = torch.zeros_like(input_tensor)
one_hot_tensor.scatter_(1, max_indices.view(-1, 1), 1)
return one_hot_tensor.permute(1, 0)
if __name__ == '__main__':
pcs1 = torch.rand(10, 1024, 4)
pcs2 = torch.rand(10, 1024, 4)