[390c2f]: / dataset.py

Download this file

366 lines (302 with data), 18.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import random
import numpy as np
import torch
import glob
import torch.utils.data as data
import sys
import pyvista
sys.path.append('.')
sys.path.append('..')
from utils import visualize_PC_with_label
import re
class LoadDataset(data.Dataset):
def __init__(self, path, num_input=2048, split='train'): #16384
self.path = path
self.num_input = num_input
self.use_cobiveco = True
self.data_augment = False
self.signal_length = 512
with open(path + 'my_split/{}.list'.format(split), 'r') as f:
filenames = [line.strip() for line in f]
self.metadata = list()
for filename in filenames:
print(filename)
datapath = path + filename + '/'
unit = 0.1
if self.use_cobiveco:
nodesXYZ, label_index = getCobiveco_vtu(datapath + filename + '_cobiveco_AHA17.vtu')
else:
nodesXYZ = np.loadtxt(datapath + filename + '_xyz.csv', delimiter=',')
label_index = np.zeros((nodesXYZ.shape[0], 1))
LVendo_node = np.unique((np.loadtxt(datapath + filename + '_lvface.csv', delimiter=',')-1).astype(int))
RVendo_node = np.unique((np.loadtxt(datapath + filename + '_rvface.csv', delimiter=',')-1).astype(int))
epi_node = np.unique((np.loadtxt(datapath + filename + '_epiface.csv', delimiter=',')-1).astype(int))
label_index[LVendo_node] = 1
label_index[RVendo_node] = 2
label_index[epi_node] = 3
label_index = label_index[..., np.newaxis]
surface_index = np.concatenate((LVendo_node, RVendo_node, epi_node), axis=0)
PC_XYZ_labeled = np.concatenate((unit*nodesXYZ, label_index), axis=1)
electrode_node = np.loadtxt(datapath + filename + '_electrodePositions.csv', delimiter=',')
Coord_base_apex = np.loadtxt(datapath + filename + '_BaseApexCoord.csv', delimiter=',')
Coord_apex, Coord_base = Coord_base_apex[1], Coord_base_apex[0]
electrode_index = 4*np.ones(electrode_node.shape[0], dtype=np.int32)
electrode_XYZ_labeled = np.concatenate((unit*electrode_node, electrode_index[..., np.newaxis]), axis=1)
signal_files = glob.glob(datapath + filename + '*_simulated_ECG' + '*.csv')
num_signal = len(signal_files)
# print(num_signal)
for id in range(num_signal):
MI_index = np.zeros(nodesXYZ.shape[0], dtype=np.int32)
ECG_value = np.loadtxt(signal_files[id], delimiter=',')
ECG_value_u = np.pad(ECG_value, ((0, 0), (0, self.signal_length-ECG_value.shape[1])), 'constant')
MI_type = signal_files[id].replace(path, '').replace(filename, '').replace('_simulated_ECG_', '').replace('.csv', '').replace('\\', '')
if MI_type == 'B1_large_transmural_slow' or MI_type == 'normal' or MI_type == 'A2_30_40_transmural':
continue
if re.compile(r'5_transmural|0_transmural', re.IGNORECASE).search(MI_type): # remove apical MI size test case
continue
if re.compile(r'AHA', re.IGNORECASE).search(MI_type): # remove randomly generated MI
continue
# if not re.compile(r'5_transmural|0_transmural', re.IGNORECASE).search(MI_type) and not (MI_type == 'A2_transmural'): # remove apical MI size test case
# continue
# if not re.compile(r'AHA', re.IGNORECASE).search(MI_type): # test only random MI!
# continue
#
# if MI_type.find('subendo') != -1:
# continue
# if MI_type != 'B3_transmural' and MI_type != 'A3_transmural' and MI_type != 'A2_transmural':
# continue
# print(MI_type)
if MI_type != 'normal':
Scar_filename = signal_files[id].replace('simulated_ECG', 'lvscarnodes')
BZ_filename = signal_files[id].replace('simulated_ECG', 'lvborderzonenodes')
if MI_type == 'B1_large_transmural_slow':
Scar_filename = Scar_filename.replace('_slow', '')
BZ_filename = BZ_filename.replace('_slow', '')
Scar_node = np.unique((np.loadtxt(Scar_filename, delimiter=',')-1).astype(int))
BZ_node = np.unique((np.loadtxt(BZ_filename, delimiter=',')-1).astype(int))
MI_index[Scar_node] = 1
MI_index[BZ_node] = 2
ECG_array = np.array(ECG_value_u)
MI_array = np.array(MI_index)
MI_type_id = np.array(id)
# print(MI_type_id)
partial_PC_labeled_array, idx_remained = resample_pcd(PC_XYZ_labeled, self.num_input)
partial_MI_lab_array = MI_array[idx_remained]
partial_PC_labeled_array_coarse, idx_remained = resample_pcd(PC_XYZ_labeled, self.num_input//4)
# visualize_PC_with_label(partial_PC_labeled_array[:, 0:3], partial_MI_array)
partial_PC_electrode_labeled_array = partial_PC_labeled_array # np.concatenate((partial_PC_labeled_array, electrode_XYZ_labeled), axis=0)
partial_PC_electrode_XYZ = partial_PC_electrode_labeled_array[:, 0:3]
partial_PC_electrode_lab = partial_PC_electrode_labeled_array[:, 3:]
# partial_MI_lab_array = partial_MI_lab_array + np.where(partial_PC_electrode_labeled_array[0:self.num_input, -1]==1.0, 3, 0)
# visualize_PC_with_label(partial_PC_labeled_array[:, 0:3], partial_MI_lab_array)
partial_PC_electrode_XYZ_normalized = normalize_data(partial_PC_electrode_XYZ, Coord_apex)
if self.data_augment:
scaling = random.uniform(0.8, 1.2)
partial_PC_electrode_XYZ_normalized = scaling*translate_point(jitter_point(rotate_point(partial_PC_electrode_XYZ_normalized, np.random.random()*np.pi)))
partial_PC_electrode_XYZ_normalized_labeled = np.concatenate((partial_PC_electrode_XYZ_normalized, partial_PC_electrode_lab), axis=1)
partial_PC_electrode_XYZ_normalized_coarse = normalize_data(partial_PC_labeled_array_coarse[:, 0:3], Coord_apex)
partial_PC_electrode_XYZ_normalized_labeled_coarse = np.concatenate((partial_PC_electrode_XYZ_normalized_coarse, partial_PC_labeled_array_coarse[:, 3:]), axis=1)
self.metadata.append((partial_PC_electrode_XYZ_normalized_labeled, partial_MI_lab_array, ECG_array, partial_PC_electrode_XYZ_normalized_labeled_coarse, MI_type))
def __getitem__(self, index):
partial_PC_electrode_XYZ_normalized_labeled, partial_MI_array, ECG_array, partial_PC_electrode_XYZ, MI_type = self.metadata[index]
partial_input = torch.from_numpy(partial_PC_electrode_XYZ_normalized_labeled).float()
gt_MI = torch.from_numpy(partial_MI_array).long()
ECG_input = torch.from_numpy(ECG_array).float()
partial_input_coarse = torch.from_numpy(partial_PC_electrode_XYZ).float()
return partial_input, ECG_input, gt_MI, partial_input_coarse, MI_type
def __len__(self):
return len(self.metadata)
class LoadDataset_all(data.Dataset):
def __init__(self, path, num_input=2048, split='train'): #16384
self.path = path
self.num_input = num_input
self.use_cobiveco = False
self.data_augment = False
self.signal_length = 512
with open(path + 'my_split/{}.list'.format(split), 'r') as f:
filenames = [line.strip() for line in f]
self.metadata = list()
for filename in filenames:
print(filename)
datapath = path + filename + '/'
unit = 1
if self.use_cobiveco:
nodesXYZ, label_index = getCobiveco_vtu(datapath + filename + '_heart_cobiveco.vtu')
else:
nodesXYZ = np.loadtxt(datapath + filename + '_xyz.csv', delimiter=',')
label_index = np.zeros((nodesXYZ.shape[0], 1), dtype=np.int)
LVendo_node = np.unique((np.loadtxt(datapath + filename + '_lvface.csv', delimiter=',')-1).astype(int))
RVendo_node = np.unique((np.loadtxt(datapath + filename + '_rvface.csv', delimiter=',')-1).astype(int))
epi_node = np.unique((np.loadtxt(datapath + filename + '_epiface.csv', delimiter=',')-1).astype(int))
label_index[LVendo_node] = 1
label_index[RVendo_node] = 2
label_index[epi_node] = 3
surface_index = np.concatenate((LVendo_node, RVendo_node, epi_node), axis=0)
PC_XYZ_labeled = np.concatenate((unit*nodesXYZ, label_index), axis=1)
electrode_node = np.loadtxt(datapath + filename + '_electrodePositions.csv', delimiter=',')
Coord_base_apex = np.loadtxt(datapath + filename + '_BaseApexCoord.csv', delimiter=',')
Coord_apex, Coord_base = Coord_base_apex[1], Coord_base_apex[0]
electrode_index = 4*np.ones(electrode_node.shape[0], dtype=np.int)
electrode_XYZ_labeled = np.concatenate((unit*electrode_node, electrode_index[..., np.newaxis]), axis=1)
signal_files = glob.glob(datapath + filename + '*_simulated_ECG' + '*.csv')
ECG_list, MI_index_list = list(), list()
MItype_list = list()
num_signal = len(signal_files)
for id in range(num_signal):
MI_index = np.zeros(nodesXYZ.shape[0], dtype=np.int)
ECG_value = np.loadtxt(signal_files[id], delimiter=',')
ECG_value_u = np.pad(ECG_value, ((0, 0), (0, self.signal_length-ECG_value.shape[1])), 'constant')
MI_type = signal_files[id].replace(path, '').replace(filename, '').replace('_simulated_ECG_', '').replace('.csv', '').replace('\\', '')
if MI_type == 'B1_large_transmural_slow' or MI_type == 'B1_large_transmural_slow':
continue
if MI_type != 'normal':
Scar_filename = signal_files[id].replace('simulated_ECG', 'lvscarnodes')
BZ_filename = signal_files[id].replace('simulated_ECG', 'lvborderzonenodes')
Scar_node = np.unique((np.loadtxt(Scar_filename, delimiter=',')-1).astype(int))
BZ_node = np.unique((np.loadtxt(BZ_filename, delimiter=',')-1).astype(int))
MI_index[Scar_node] = 421
MI_index[BZ_node] = 422
ECG_list.append(ECG_value_u)
MI_index_list.append(MI_index)
MItype_list.append(MI_type)
ECG_array = np.array(ECG_list).transpose(1, 2, 0)
MI_array = np.array(MI_index_list).transpose(1, 0)
partial_PC_labeled_array, idx_remained = resample_pcd(PC_XYZ_labeled[surface_index], self.num_input)
partial_MI_array = MI_array[surface_index][idx_remained]
partial_PC_electrode_labeled_array = np.concatenate((partial_PC_labeled_array, electrode_XYZ_labeled), axis=0)
partial_PC_electrode_XYZ = partial_PC_electrode_labeled_array[:, 0:3]
partial_PC_electrode_lab = np.expand_dims(partial_PC_electrode_labeled_array[:, 3], axis=1)
partial_PC_electrode_XYZ_normalized = normalize_data(partial_PC_electrode_XYZ, Coord_apex)
if self.data_augment:
scaling = random.uniform(0.8, 1.2)
partial_PC_electrode_XYZ_normalized = scaling*translate_point(jitter_point(rotate_point(partial_PC_electrode_XYZ_normalized, np.random.random()*np.pi)))
partial_PC_electrode_XYZ_normalized_labeled = np.concatenate((partial_PC_electrode_XYZ_normalized, partial_PC_electrode_lab), axis=1)
self.metadata.append((partial_PC_electrode_XYZ_normalized_labeled, partial_MI_array, ECG_array, partial_PC_electrode_XYZ))
def __getitem__(self, index):
partial_PC_electrode_XYZ_normalized_labeled, partial_MI_array, ECG_array, partial_PC_electrode_XYZ = self.metadata[index]
ECG_array[np.isnan(ECG_array)] = 0 # ECG output with a size of [n_batch, 8*256], covert the nan value into 0
partial_input = torch.from_numpy(partial_PC_electrode_XYZ_normalized_labeled).float()
gt_MI, ECG_input = torch.from_numpy(partial_MI_array).float(), torch.from_numpy(ECG_array).float()
partial_input_ori = torch.from_numpy(partial_PC_electrode_XYZ).float()
return partial_input, ECG_input, gt_MI, partial_input_ori
def __len__(self):
return len(self.metadata)
def getCobiveco_vtu(cobiveco_fileName): # Read Cobiveco data in .vtu format (added by Lei on 2023/01/30)
cobiveco_vol = pyvista.read(cobiveco_fileName) #, force_ext='.vtu'
cobiveco_nodesXYZ = cobiveco_vol.points
cobiveco_nodes_array = cobiveco_vol.point_data
# Apex-to-Base - ab
ab = cobiveco_nodes_array['ab']
# Rotation angle - rt
rt = cobiveco_nodes_array['rt']
# Transmurality - tm
tm = cobiveco_nodes_array['tm']
# Ventricle - tv
tv = cobiveco_nodes_array['tv']
# AHA-17 map - aha
aha = cobiveco_nodes_array['aha']
return cobiveco_nodesXYZ, np.transpose(np.array([ab, rt, tm, tv, aha], dtype=float))
### point cloud augmentation ###
# translate point cloud
def translate_point(point):
point = np.array(point)
shift = [random.uniform(-0.5, 0.5), random.uniform(-0.5, 0.5), random.uniform(-0.5, 0.5)]
shift = np.expand_dims(np.array(shift), axis=0)
shifted_point = np.repeat(shift, point.shape[0], axis=0)
shifted_point += point
return shifted_point
# add Gaussian noise
def jitter_point(point, sigma=0.01, clip=0.01):
assert(clip > 0)
point = np.array(point)
point = point.reshape(-1,3)
Row, Col = point.shape
jittered_point = np.clip(sigma * np.random.randn(Row, Col), -1*clip, clip)
jittered_point += point
return jittered_point
# rotate point cloud
def rotate_point(point, rotation_angle=0.5*np.pi):
point = np.array(point)
cos_theta = np.cos(rotation_angle)
sin_theta = np.sin(rotation_angle)
# Rotation around X axis
rotation_matrix_X = np.array([[1, 0, 0],
[0, cos_theta, -sin_theta],
[0, sin_theta, cos_theta]])
# Rotation around Y axis
rotation_matrix_Y = np.array([[cos_theta, 0, sin_theta],
[0, 1, 0],
[-sin_theta, 0, cos_theta]])
# Rotation around Z axis
rotation_matrix_Z = np.array([[cos_theta, sin_theta, 0],
[-sin_theta, cos_theta, 0],
[0, 0, 1]])
rotated_point = np.dot(point.reshape(-1, 3), rotation_matrix_Z)
return rotated_point
# normalize point cloud based on apex coordinate
def normalize_data(PC, Coord_apex):
""" Normalize the point cloud, use coordinates of centroid/ apex,
Input:
NxC array
Output:
NxC array
"""
N, C = PC.shape
normal_data = np.zeros((N, C))
# centroid = np.mean(PC, axis=0)
PC = PC - Coord_apex
# m = np.max(np.sqrt(np.sum(PC ** 2, axis=1)))
# PC = PC / m
# normal_data = PC
# compute the minimum and maximum values of each coordinate
min_coords = np.min(PC, axis=0)
max_coords = np.max(PC, axis=0)
# normalize the point cloud coordinates
normal_data = (PC - min_coords) / (max_coords - min_coords)
return normal_data
def resample_pcd_ATM(pcd, ATM, n):
"""Drop or duplicate points so that pcd has exactly n points"""
idx_root_nodes = np.where(ATM[:, 0]==1.0) # ATM[:, 0]
prob = 1/(pcd.shape[0]-idx_root_nodes[0].shape[0])
node_prob = prob*np.ones(pcd.shape[0])
node_prob[idx_root_nodes] = 0
idx = np.random.choice(np.arange(pcd.shape[0]), n-idx_root_nodes[0].shape[0], p=node_prob, replace=False)
idx_remained = np.union1d(idx, idx_root_nodes)
# idx_updated_permuted = np.random.permutation(idx_updated)
# if idx_updated_permuted.shape[0] < n:
# idx = np.concatenate([idx, np.random.randint(pcd.shape[0], size=n-pcd.shape[0])])
return pcd[idx_remained], ATM[idx_remained], idx_remained
def resample_pcd_ATM_ori(pcd, ATM, n):
"""Drop or duplicate points so that pcd has exactly n points"""
idx = np.random.permutation(pcd.shape[0])
if idx.shape[0] < n:
idx = np.concatenate([idx, np.random.randint(pcd.shape[0], size=n-pcd.shape[0])])
return pcd[idx[:n]], ATM[idx[:n]]
def resample_gd(gt_output, num_coarse, num_dense): #added by Lei in 2022/02/10 to seperately resample groundtruth label
"""Drop or duplicate points so that pcd has exactly n points"""
choice = np.random.choice(len(gt_output), num_coarse, replace=True)
coarse_gt = gt_output[choice, :]
dense_gt = resample_pcd(gt_output, num_dense)
return coarse_gt, dense_gt
def resample_pcd(pcd, n):
"""Drop or duplicate points so that pcd has exactly n points"""
idx = np.random.permutation(pcd.shape[0])
if idx.shape[0] < n:
idx = np.concatenate([idx, np.random.randint(pcd.shape[0], size=n-pcd.shape[0])])
return pcd[idx[:n]], idx[:n]
if __name__ == '__main__':
ROOT = './dataset/'
GT_ROOT = os.path.join(ROOT, 'gt')
PARTIAL_ROOT = os.path.join(ROOT, 'partial')
train_dataset = LoadDataset(partial_path=PARTIAL_ROOT, gt_path=GT_ROOT, split='train')
val_dataset = LoadDataset(partial_path=PARTIAL_ROOT, gt_path=GT_ROOT, split='val')
test_dataset = LoadDataset(partial_path=PARTIAL_ROOT, gt_path=GT_ROOT, split='test')
print("\033[33mTraining dataset\033[0m has {} pair of partial and ground truth point clouds".format(len(train_dataset)))
print("\033[33mValidation dataset\033[0m has {} pair of partial and ground truth point clouds".format(len(val_dataset)))
print("\033[33mTesting dataset\033[0m has {} pair of partial and ground truth point clouds".format(len(test_dataset)))
# visualization
input_pc, coarse_pc, dense_pc, conditions = train_dataset[random.randint(0, len(train_dataset))-1]
print("partial input point cloud has {} points".format(len(input_pc)))
print("coarse output point cloud has {} points".format(len(coarse_pc)))
print("dense output point cloud has {} points".format(len(dense_pc)))