Diff of /README.md [000000] .. [390c2f]

Switch to side-by-side view

--- a
+++ b/README.md
@@ -0,0 +1,41 @@
+# MI inverse inference
+Code for the inverse inference of infarcted area from ECG and MRI for myocardial infarction (MI) patients. This is achieved within a cardiac digital twin (CDT) framework, where the anatomical twinning personalizes the geometrical model, while functional twinning personalizes the electrophysiological model.
+
+![](fig/cardiac_digital_twins.png)
+
+
+## Notes:<a id="Summary"/>
+1. *Cardiac_Personalisation-SenAnalysis* fold only contain partial code for the ECG simulation and the sensitivity analysis. For the full Eikonal-based ECG simulation code, please contact [Dr Julia Camps](mailto:julia.camps@cs.ox.ac.uk).
+2. *Cobiveco* fold only contrain partial code for converting biventicle mesh into cobiveco mesh. For the complete Cobiveco mesh reconstruction code, please visit [KIT-IBE Cobiveco Github repository](https://github.com/KIT-IBT/Cobiveco).
+
+## Package dependencies:<a id="Package dependencies"/>
+This repository is based on PyTorch, running on a computer with 3.50~GHz Intel(R) Xeon(R) E-2146G CPU and an NVIDIA GeForce RTX 3060.
+
+## Dataset:<a id="Dataset"/>
+Our network is trained based on UKB dataset, which contains paired multi-view MRIs and ECG data. We have reconstruced the cardiac geometry from the multi-view MRIs and converted it into cobiveco mesh. The scar/border zone area were assigned on the mesh and subsequently used for ECG simulation of MI patients.
+
+The data folder should be like:
+```
+tree
+`-- UKB_clinical_data
+    `-- patientID
+    |    |-- patientID_cobiveco_AHA17.vtu
+    |    |-- patientID_heart_cobiveco.vtu
+    |    |-- patientID_simulated_ECG_xxx_subendo.csv
+    |    |-- patientID_simulated_ECG_xxx_transmural.csv
+    |    |-- ...
+    |    |-- patientID_electrodePosition.csv
+		
+```
+
+## Citation:<a id="Citation"/>
+If you find this code useful in your research, please consider citing:
+```
+@article{jounral/TMI/li2024,
+  title={Towards Enabling Cardiac Digital Twins of Myocardial Infarction Using Deep Computational Models for Inverse Inference},
+  author={Li, Lei and Camps, Julia and Wang, Zhinuo and Banerjee, Abhirup and Rodriguez, Blanca and Grau, Vicente},
+  journal={IEEE Transactions on Medical Imaging},
+  year={2024}
+}
+
+```