[1ee192]: / core / unet_pos.py

Download this file

918 lines (744 with data), 46.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
# -*- coding: utf-8 -*-
"""
@author: Qian Yue
"""
from __future__ import print_function, division, absolute_import, unicode_literals
import os
import shutil
import numpy as np
from collections import OrderedDict
import logging
from sklearn.metrics import roc_auc_score
import tensorflow as tf
from core import util
from core.layers import *
from core.ACNN import *
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
def create_position_branch(in_node, batch_size):
in_node_flat = tf.reshape(in_node, [batch_size, 15*15*256*2], name='flat_node_fc')
pos_fc_1 = tf.layers.dense(in_node_flat, units=256,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
name='position_fc_1')
pos_fc_2 = tf.layers.dense(pos_fc_1, units=batch_size,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
name='position_fc_2')
return tf.nn.sigmoid(pos_fc_2)
def create_conv_net(x, train_phase, dropout_rate=0.2, n_class=4, regularizer=None, layers=5,
features_root=16, filter_size=3, pool_size=2, summaries=True, batch_size=32):
"""
Creates a new convolutional unet for the given parametrization.
:param x: input tensor, shape [?,nx,ny,channels]
:param dropout_rate: dropout probability tensor
:param n_class: number of output labels
:param train_phase: flag True for training and False for inference
:param regularizer: Type of regularizer applied to the kernel weights.
:param layers: number of layers in the net
:param features_root: number of features in the first layer
:param filter_size: size of the convolution filter
:param pool_size: size of the max pooling operation
:param summaries: Flag if summaries should be created
"""
logging.info("Layers {layers}, features {features}, filter size {filter_size}x{filter_size}, "
"pool size: {pool_size}x{pool_size}".format(layers=layers, features=features_root,
filter_size=filter_size,
pool_size=pool_size))
in_node = tf.cond(train_phase, lambda: gaussian_noise_layer(x, std=1.),
lambda: x, name='gaussian_noise')
# in_node.set_shape([None, None, None, channels])
pools = OrderedDict()
deconv = OrderedDict()
dw_h_convs = OrderedDict()
up_h_convs = OrderedDict()
# down layers
for layer in range(0, layers):
with tf.variable_scope("down_conv_{}".format(str(layer))):
features = 2 ** layer * features_root
conv1 = tf.layers.conv2d(in_node, filters=features, kernel_size=filter_size,
padding='same', use_bias=False,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer, name='conv1')
conv1_bn = tf.layers.batch_normalization(conv1, training=train_phase, name='bn1')
dropout = tf.layers.dropout(conv1_bn, dropout_rate, training=train_phase, name='dropout')
conv1_relu = tf.nn.relu(dropout, name='relu1')
conv2 = tf.layers.conv2d(conv1_relu, filters=features, kernel_size=filter_size,
padding='same', use_bias=False,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer, name='conv2')
conv2_bn = tf.layers.batch_normalization(conv2, training=train_phase, name='bn2')
dropout = tf.layers.dropout(conv2_bn, dropout_rate, training=train_phase, name='dropout')
conv2_relu = tf.nn.relu(dropout, name='relu2')
dw_h_convs[layer] = conv2_relu
if layer < layers - 1:
pools[layer] = tf.layers.max_pooling2d(dw_h_convs[layer], pool_size, strides=pool_size, name='maxpool')
in_node = pools[layer]
in_node = dw_h_convs[layers - 1]
pos = tf.cond(train_phase, lambda: create_position_branch(in_node, batch_size),
lambda: np.zeros([batch_size, ], dtype=np.float32), name='position_pred')
# up layers
for layer in range(layers - 2, -1, -1):
with tf.variable_scope("up_conv_{}".format(str(layer))):
features = 2 ** (layer + 1) * features_root
h_deconv = tf.layers.conv2d_transpose(in_node, filters=features // 2, kernel_size=pool_size,
strides=pool_size, use_bias=False,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer,
name='deconv')
h_deconv_bn = tf.layers.batch_normalization(h_deconv, training=train_phase, name='deconv_bn')
h_deconv_relu = tf.nn.relu(h_deconv_bn, name='deconv_relu')
h_deconv_concat = crop_and_concat(dw_h_convs[layer], h_deconv_relu)
h_deconv_concat.set_shape([None, None, None, features])
deconv[layer] = h_deconv_concat
conv1 = tf.layers.conv2d(h_deconv_concat, filters=features // 2, kernel_size=filter_size,
padding='same', use_bias=False,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer, name='conv1')
conv1_bn = tf.layers.batch_normalization(conv1, training=train_phase, name='bn1')
dropout = tf.layers.dropout(conv1_bn, dropout_rate, training=train_phase, name='dropout')
conv1_relu = tf.nn.relu(dropout, name='relu1')
conv2 = tf.layers.conv2d(conv1_relu, filters=features // 2, kernel_size=filter_size,
padding='same', use_bias=False,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer, name='conv2')
conv2_bn = tf.layers.batch_normalization(conv2, training=train_phase, name='bn2')
dropout = tf.layers.dropout(conv2_bn, dropout_rate, training=train_phase, name='dropout')
conv2_relu = tf.nn.relu(dropout, name='relu2')
up_h_convs[layer] = conv2_relu
in_node = up_h_convs[layer]
# Output Map
with tf.variable_scope("output_map"):
conv = tf.layers.conv2d(in_node, filters=n_class, kernel_size=1, padding='same',
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer,
bias_regularizer=regularizer, name='conv')
up_h_convs["out"] = conv
output_map = up_h_convs["out"]
if summaries:
with tf.variable_scope("summaries"):
for k in dw_h_convs.keys():
tf.summary.histogram("dw_convolution_%02d" % k + '/activations', dw_h_convs[k])
for k in up_h_convs.keys():
tf.summary.histogram("up_convolution_%s" % k + '/activations', up_h_convs[k])
return output_map, pos
class UNet(object):
"""
A U-Net implementation
:param channels: (optional) number of channels in the input image
:param n_class: (optional) number of output labels
:param cost_name: (optional) name of the cost function. Default is 'cross_entropy'
:param cost_kwargs: (optional) kwargs passed to the cost function. See Unet._get_cost for more options
"""
def __init__(self, channels=3, n_class=4, batch_size=32, pos_parameter=1e-6,
cost_name="cross_entropy", cost_kwargs=None, **net_kwargs):
if cost_kwargs is None:
cost_kwargs = {}
tf.reset_default_graph()
self.channels = channels
self.n_class = n_class
self.batch_size = batch_size
self.cost_name = cost_name
self.pos_parameter = pos_parameter
self.cost_kwargs = cost_kwargs
self.net_kwargs = net_kwargs
self.summaries = net_kwargs.get("summaries", True)
# initialize regularizer
self.regularizer_type = self.cost_kwargs.pop("regularizer_type", None)
regularizer = None
if self.regularizer_type is not None:
self.regularization_coefficient = self.cost_kwargs.get("regularization_coefficient")
if self.regularizer_type == 'L2_norm':
regularizer = tf.contrib.layers.l2_regularizer(scale=self.regularization_coefficient)
elif self.regularizer_type == 'L1_norm':
regularizer = tf.contrib.layers.l1_regularizer(scale=self.regularization_coefficient)
with tf.variable_scope('u_net'):
self.x = tf.placeholder(tf.float32, shape=[None, None, None, channels], name='x')
self.y = tf.placeholder(tf.float32, shape=[None, None, None, n_class], name='y')
self.p = tf.placeholder(tf.float32, shape=[None, ], name='p')
self.train_phase = tf.placeholder(tf.bool, name='train_phase')
self.dropout_rate = tf.placeholder(tf.float32, name='dropout_rate')
self.need_pos = tf.placeholder(tf.bool, name='need_pos')
self.x = tf.image.random_contrast(self.x, lower=0.5, upper=1)
logits, pos = create_conv_net(self.x, self.train_phase, dropout_rate=self.dropout_rate,
n_class=self.n_class, regularizer=regularizer,
batch_size=self.batch_size, **net_kwargs)
self.labels = self.y
with tf.name_scope('post_processing'):
self.predictor = self._get_predictor(logits)
self.segment = self._get_segmentation(self.predictor)
# get variables and update-ops
self.trainable_variables = tf.trainable_variables(scope='u_net')
self.training_variables = tf.global_variables(scope='u_net')
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='u_net')
# set global step and moving average
self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
with tf.name_scope('moving_average'):
variable_averages = tf.train.ExponentialMovingAverage(decay=0.999, num_updates=self.global_step)
self.variable_averages_op = variable_averages.apply(self.trainable_variables)
self.variables_to_restore = variable_averages.variables_to_restore()
with tf.variable_scope('cost_function'):
self.cost = tf.cond(self.train_phase,
lambda: self._get_cost(logits, self.predictor, self.labels, self.pos_parameter,
pos=pos, position=self.p,
need_pos=self.need_pos, regularizer_type=self.regularizer_type),
lambda: self._get_cost(logits, self.predictor, self.labels, self.pos_parameter,
pos=pos, position=self.p,
need_pos=self.need_pos, regularizer_type=None))
self.gradients_node = tf.gradients(self.cost, self.trainable_variables, name='gradients')
with tf.name_scope('metrics'):
self.correct_pred = tf.equal(tf.argmax(self.predictor, -1), tf.argmax(self.labels, -1))
self.acc, self.update_acc = tf.metrics.accuracy(tf.argmax(self.labels, -1), tf.argmax(self.predictor, -1),
name='acc')
self.sens, self.update_sens = tf.metrics.sensitivity_at_specificity(self.labels[..., 1:],
self.predictor[..., 1:], 0.95,
num_thresholds=50, name='sens')
self.spec, self.update_spec = tf.metrics.specificity_at_sensitivity(self.labels[..., 1:],
self.predictor[..., 1:], 0.95,
num_thresholds=50, name='spec')
self.auc, self.update_auc = tf.metrics.auc(self.labels[..., 1:], self.predictor[..., 1:], num_thresholds=50,
name='auc')
self.dice_score = self._get_dice_score(self.segment, self.labels)
def _get_predictor(self, logits):
"""
produce the probability maps from the final feature maps of the network
"""
return tf.nn.softmax(logits, axis=-1, name='probability_map')
def _get_segmentation(self, predictor):
"""
produce the segmentation maps from the probability maps
"""
return tf.where(tf.equal(tf.reduce_max(predictor, -1, keepdims=True), predictor),
tf.ones_like(predictor),
tf.zeros_like(predictor), name='segmentation_map')
def _get_cost(self, logits, probs, labels, pos_parameter, pos, position, need_pos, regularizer_type=None):
"""
Constructs the cost function based on the cost_name attribution
:param logits: unscaled log probabilities
:param probs: probability map produced by softmax layer
:param labels: one-hot representation of ground-truth
:param regularizer_type: type of regularization
Optional arguments are:
regularization_coefficient: weight of the regularization term
scale_weight: weights for multi-scale output when computing the combined loss
:return loss: weighted loss of multi-scale outputs, including the regularization term
"""
flat_logits = tf.reshape(logits, [-1, self.n_class])
flat_labels = tf.reshape(labels, [-1, self.n_class])
flat_probs = tf.reshape(probs, [-1, self.n_class])
if self.cost_name == 'cross_entropy':
loss_map = tf.nn.softmax_cross_entropy_with_logits_v2(logits=flat_logits, labels=flat_labels,
name='cross_entropy_map')
loss = tf.reduce_mean(loss_map)
elif self.cost_name == 'weighted_cross_entropy':
loss_map = tf.nn.softmax_cross_entropy_with_logits_v2(logits=flat_logits, labels=flat_labels,
name='cross_entropy_map')
weight_map = balance_weight_map(flat_labels)
loss = tf.reduce_mean(loss_map * weight_map)
elif self.cost_name == "dice_loss":
dice = 0.
eps = 1.
for i in range(self.n_class):
intersection = tf.reduce_sum(flat_probs[..., i] * flat_labels[..., i])
union = tf.reduce_sum(flat_probs[..., i] + flat_labels[..., i])
dice += 1 - (2 * intersection + eps) / (union + eps)
loss = dice / self.n_class
elif self.cost_name == "generalized_dice_loss":
eps = 1.
class_weight = tf.reduce_sum(flat_labels) / tf.reduce_sum(flat_labels, axis=0)
intersection = 0.
union = 0.
for i in range(self.n_class):
intersection += tf.reduce_sum(class_weight[i] * tf.reduce_sum(flat_probs[..., i] *
flat_labels[..., i]))
union += tf.reduce_sum(class_weight[i] * tf.reduce_sum(flat_probs[..., i] + flat_labels[..., i]))
loss = 1 - (2 * intersection + eps) / (union + eps)
elif self.cost_name == "cross_entropy+dice_loss":
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=flat_logits,
labels=flat_labels),
name='cross_entropy_loss')
dice_loss = 0.
eps = 1.
for i in range(self.n_class):
intersection = tf.reduce_sum(flat_probs[..., i] * flat_labels[..., i])
union = tf.reduce_sum(flat_probs[..., i] + flat_labels[..., i])
dice_loss += 1 - (2 * intersection + eps) / (union + eps)
loss = cross_entropy + dice_loss / self.n_class
elif self.cost_name == "weighted_cross_entropy+generalized_dice_loss":
cross_entropy = tf.reduce_mean(balance_weight_map(flat_labels) *
tf.nn.softmax_cross_entropy_with_logits_v2(logits=flat_logits,
labels=flat_labels,
name='cross_entropy_map'))
eps = 1.
class_weight = tf.reduce_sum(flat_labels) / tf.reduce_sum(flat_labels, axis=0)
intersection = 0.
union = 0.
for i in range(self.n_class):
intersection += tf.reduce_sum(class_weight[i] * tf.reduce_sum(flat_probs[..., i] *
flat_labels[..., i]))
union += tf.reduce_sum(class_weight[i] * tf.reduce_sum(flat_probs[..., i] + flat_labels[..., i]))
dice_loss = 1 - (2 * intersection + eps) / (union + eps)
loss = cross_entropy + dice_loss / self.n_class
elif self.cost_name == "exponential_logarithmic":
eps = 1.
dice_loss = 0.
for i in range(self.n_class):
intersection = tf.reduce_sum(flat_probs[..., i] * flat_labels[..., i])
union = eps + tf.reduce_sum(flat_probs[..., i] + flat_labels[..., i])
dice_loss += tf.pow(-tf.log((2 * intersection + eps) / union), .3) / self.n_class
'''
cross_weight = tf.reduce_sum(
flat_labels * tf.pow(tf.reduce_sum(flat_labels) / tf.reduce_sum(flat_labels, axis=0, keepdims=True),
.5), axis=-1)
cross_loss = tf.reduce_mean(cross_weight * tf.pow(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=flat_logits, labels=flat_labels), 1.))
'''
cross_loss = tf.reduce_mean(tf.pow(tf.nn.softmax_cross_entropy_with_logits_v2(logits=flat_logits,
labels=flat_labels), 1.))
loss = 0.8 * dice_loss + 0.2 * cross_loss
else:
raise ValueError("Unknown cost function: " % self.cost_name)
if regularizer_type is not None:
# add regularization loss
if regularizer_type in ('L2_norm', 'L1_norm'):
self.regularization_term = tf.losses.get_regularization_loss(scope='network')
loss += self.regularization_term
elif regularizer_type == 'anatomical_constraint_cae':
with tf.variable_scope('autoencoder', reuse=tf.AUTO_REUSE):
segment_codes = create_ae_encoder(self.segment, False, False, batch_size=self.batch_size)
segment_decoder = create_ae_decoder(segment_codes, False, n_class=self.n_class)
labels_codes = create_ae_encoder(self.labels, False, False, batch_size=self.batch_size)
labels_decoder = create_ae_decoder(labels_codes, False, n_class=self.n_class)
self.ae_variables = tf.global_variables(scope='cost_function/autoencoder')
self.abs_ae_path = os.path.abspath(self.cost_kwargs.pop('acnn_model_path', './autoencoder_trained'))
self.regularization_term = tf.nn.l2_loss(segment_decoder - labels_decoder, name='regularization_term')
loss += self.regularization_coefficient * self.regularization_term
elif regularizer_type == 'anatomical_constraint_acnn':
with tf.variable_scope('autoencoder', reuse=tf.AUTO_REUSE):
segment_codes = create_ae_encoder(self.segment, False, False, batch_size=self.batch_size)
labels_codes = create_ae_encoder(self.labels, False, False, batch_size=self.batch_size)
self.ae_variables = tf.global_variables(scope='cost_function/autoencoder')
self.abs_ae_path = os.path.abspath(self.cost_kwargs.pop('acnn_model_path', './autoencoder_trained'))
self.regularization_term = tf.nn.l2_loss(segment_codes - labels_codes, name='regularization_term')
loss += self.regularization_coefficient * self.regularization_term
else:
raise ValueError("Unknown regularization type: " % self.regularizer_type)
self.pos_regularization = tf.cond(need_pos, lambda: tf.nn.l2_loss(position - pos, name='position_regularizer'), lambda: 0., name='position_loss')
loss += pos_parameter * self.pos_regularization
return loss
def _get_dice_score(self, segment, label):
"""
Return the Dice score based only on segmentation results.
Segmentation is labelled by setting the maximum along classes of predictors to be 1.
"""
eps = 1.
dice = 0.
for i in range(1, self.n_class):
intersection = tf.reduce_sum(segment[..., i] * label[..., i])
union = tf.reduce_sum(segment[..., i] + label[..., i])
dice += 2 * intersection / (union + eps)
return tf.divide(dice, tf.cast(self.n_class-1, dtype=tf.float32), name='dice_score')
def predict(self, model_path, x_test):
"""
Uses the model to create a prediction for the given data
:param model_path: path to the model checkpoint to restore
:param x_test: Data to predict on. Shape [n, nx, ny, channels]
:returns prediction: The unet prediction Shape [n, px, py, labels] (px=nx-self.offset/2)
"""
init = tf.global_variables_initializer()
prediction = []
with tf.Session(config=config) as sess:
# Initialize variables
sess.run(init)
# Restore model weights from previously saved model
self.restore(sess, model_path, var_list=self.variables_to_restore)
for test_x in x_test:
y_dummy = np.empty((test_x.shape[0], test_x.shape[1], test_x.shape[2], self.n_class))
prediction.append(sess.run(self.predictor, feed_dict={self.x: test_x, self.y: y_dummy,
self.p: np.empty((self.batch_size, )),
self.dropout_rate: 0.0,
self.train_phase: False,
self.need_pos: False}))
return prediction
def save(self, sess, model_path, latest_filename, **kwargs):
"""
Saves the current session to a checkpoint
:param sess: current session
:param model_path: path to file system location
:param latest_filename: Optional name for the protocol buffer file that will contains the list of most recent
checkpoints.
"""
saver = tf.train.Saver(**kwargs)
save_path = saver.save(sess, model_path, latest_filename=latest_filename)
return save_path
def restore(self, sess, model_path, **kwargs):
"""
Restores a session from a checkpoint
:param sess: current session instance
:param model_path: path to file system checkpoint location
"""
saver = tf.train.Saver(**kwargs)
saver.restore(sess, model_path)
logging.info("Model restored from file: %s" % model_path)
class Trainer(object):
"""
Trains a U-Net instance.
:param net: the unet instance to train
:param batch_size: size of training batch
:param norm_grads: (optional) true if normalized gradients should be added to the summaries
:param optimizer_name: (optional) name of the optimizer to use (momentum or adam)
:param opt_kwargs: (optional) kwargs passed to the learning rate (momentum opt) and to the optimizer
"""
def __init__(self, net, batch_size=1, norm_grads=False, optimizer_name="momentum", opt_kwargs=None):
if opt_kwargs is None:
opt_kwargs = {}
self.net = net
self.batch_size = batch_size
self.norm_grads = norm_grads
self.optimizer_name = optimizer_name
self.opt_kwargs = opt_kwargs
self.global_step = net.global_step
self.p_dummy = np.empty((self.batch_size, ))
def _get_optimizer(self, training_iters, global_step, clip_gradient=False):
update_ops = self.net.update_ops
var_list = self.net.trainable_variables
if self.optimizer_name == "momentum":
learning_rate = self.opt_kwargs.pop("learning_rate", 0.2)
decay_rate = self.opt_kwargs.pop("decay_rate", 0.95)
momentum = self.opt_kwargs.pop("momentum", 0.2)
self.learning_rate_node = tf.train.exponential_decay(learning_rate=learning_rate,
global_step=global_step,
decay_steps=training_iters,
decay_rate=decay_rate,
staircase=True, name='learning_rate')
optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate_node, momentum=momentum,
**self.opt_kwargs)
elif self.optimizer_name == "adam":
learning_rate = self.opt_kwargs.pop("learning_rate", 0.001)
self.learning_rate_node = tf.Variable(learning_rate, name='learning_rate')
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_node,
**self.opt_kwargs)
else:
raise ValueError("Unknown optimizer: %s" % self.optimizer_name)
if clip_gradient:
gradients, variables = zip(*optimizer.compute_gradients(self.net.cost, var_list=var_list))
# clip by global norm
capped_grads, _ = tf.clip_by_global_norm(gradients, 1.0)
'''
# clip by individual norm
capped_grads = [None if grad is None else tf.clip_by_norm(grad, 1.0) for grad in gradients]
'''
opt_op = optimizer.apply_gradients(zip(capped_grads, variables), global_step=global_step)
else:
opt_op = optimizer.minimize(self.net.cost, global_step=global_step, var_list=var_list)
with tf.control_dependencies([opt_op]):
train_op = tf.group([self.net.variable_averages_op, update_ops])
return optimizer, train_op
def _initialize(self, training_iters, clip_gradient, model_path, restore, prediction_path):
global_step = self.net.global_step
self.norm_gradients_node = tf.Variable(tf.constant(0.0, shape=[len(self.net.gradients_node)]),
name='norm_gradients')
if self.net.summaries and self.norm_grads:
tf.summary.histogram('norm_grads', self.norm_gradients_node)
# create summary protocol buffers for training metrics
with tf.name_scope('train_metrics_summary'):
tf.summary.scalar('Training_Loss', self.net.cost)
if self.net.regularizer_type is not None:
tf.summary.scalar('Training_Regularization_Loss', self.net.regularization_term)
tf.summary.scalar('Training_Accuracy', self.net.acc)
tf.summary.scalar('Training_AUC', self.net.auc)
tf.summary.scalar('Training_Sensitivity', self.net.sens)
tf.summary.scalar('Training_Specificity', self.net.spec)
tf.summary.scalar('Training_Dice_score', self.net.dice_score)
# initialize optimizer
with tf.name_scope('optimizer'):
self.optimizer, self.train_op = self._get_optimizer(training_iters, global_step, clip_gradient)
# create a summary protocol buffer for learning rate
with tf.name_scope('lr_summary'):
tf.summary.scalar('learning_rate', self.learning_rate_node)
# Merges summaries in the default graph
self.summary_op = tf.summary.merge_all()
# create an op that initializes all training variables
init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
self.prediction_path = prediction_path
abs_prediction_path = os.path.abspath(self.prediction_path)
model_path = os.path.abspath(model_path)
# remove the previous directory for model storing and validation prediction
if not restore:
logging.info("Removing '{:}'".format(abs_prediction_path))
shutil.rmtree(abs_prediction_path, ignore_errors=True)
logging.info("Removing '{:}'".format(model_path))
shutil.rmtree(model_path, ignore_errors=True)
# create a new directory for model storing and validation prediction
if not os.path.exists(abs_prediction_path):
logging.info("Allocating '{:}'".format(abs_prediction_path))
os.makedirs(abs_prediction_path)
if not os.path.exists(model_path):
logging.info("Allocating '{:}'".format(model_path))
os.makedirs(model_path)
return init
def train(self, train_data_provider, val_data_provider, train_original_data_provider, validation_batch_size, model_path, training_iters=10,
epochs=100, dropout=0.75, clip_gradient=False, display_step=1, restore=True, write_graph=False,
prediction_path='validation_prediction'):
"""
Launches the training process
:param train_data_provider: callable returning training data
:param val_data_provider: callable returning validation data
:param validation_batch_size: number of data for validation
:param model_path: path where to store checkpoints
:param training_iters: number of training mini batch iteration
:param epochs: number of epochs
:param dropout: dropout probability
:param clip_gradient: whether to apply gradient clipping
:param display_step: number of steps till outputting stats
:param restore: Flag if previous model should be restored
:param write_graph: Flag if the computation graph should be written as protobuf file to the output path
:param prediction_path: path where to save predictions on each epoch
"""
save_path = os.path.join(model_path, "best_model.ckpt")
goon_path = os.path.join(model_path, "goon_model.ckpt")
init = self._initialize(training_iters, clip_gradient, model_path, restore, prediction_path)
with tf.Session(config=config) as sess:
if write_graph:
tf.train.write_graph(sess.graph_def, model_path, "graph.pb", False)
# initialization
sess.run(init)
# ACNN regularization
if self.net.regularizer_type == 'anatomical_constraint':
ae_ckpt = tf.train.get_checkpoint_state(self.net.abs_ae_path)
if ae_ckpt and ae_ckpt.model_checkpoint_path:
logging.info("Model restored from file: {:}".format(ae_ckpt.model_checkpoint_path))
# print([v.name for v in self.net.ae_variables])
ae_var_list = dict((v.name.lstrip('cost_function/').rstrip(':0'), v) for v in self.net.ae_variables)
self.net.restore(sess, ae_ckpt.model_checkpoint_path, var_list=ae_var_list)
# restore model
if restore:
ckpt = tf.train.get_checkpoint_state(model_path, latest_filename='goon_checkpoint')
if ckpt and ckpt.model_checkpoint_path:
self.net.restore(sess, ckpt.model_checkpoint_path,
var_list=self.net.training_variables + [tf.train.get_global_step()])
# create summary writer for training summaries
summary_writer = tf.summary.FileWriter(model_path, graph=sess.graph)
# read validation data
test_x, test_y, test_affine, _ = val_data_provider(validation_batch_size)
# read the original train data
train_x, train_y, train_affine, _ = train_original_data_provider(25)
# visualize performance on validation data
self.store_prediction(sess, test_x, test_y, test_affine)
test_acc = np.array([])
test_dice = np.array([])
test_auc = np.array([])
test_sens = np.array([])
test_spec = np.array([])
if epochs == 0:
return save_path, test_acc, test_dice, test_auc, test_sens, test_spec
logging.info("Start U-net optimization based on loss function: {} and regularizer type: {}".format(
self.net.cost_name, self.net.regularizer_type))
if self.net.regularizer_type is not None:
logging.info("Current regularization coefficient: {}".format(self.net.regularization_coefficient))
lr = 0.
avg_gradients = None
for epoch in range(epochs):
total_loss = 0.
for step in range((epoch * training_iters), ((epoch + 1) * training_iters)):
# read training data
batch_x, batch_y, _, batch_position = train_data_provider(self.batch_size)
# get output shape
prediction = sess.run(self.net.predictor, feed_dict={self.net.x: batch_x,
self.net.y: batch_y,
self.net.p: batch_position,
self.net.dropout_rate: 0.,
self.net.train_phase: False,
self.net.need_pos: False})
pred_shape = prediction.shape
# optimization operation (back-propagation)
_, loss, lr, gradients = sess.run([self.train_op, self.net.cost, self.learning_rate_node,
self.net.gradients_node],
feed_dict={self.net.x: batch_x,
self.net.y: util.crop_to_shape(batch_y, pred_shape),
self.net.p: batch_position,
self.net.dropout_rate: dropout,
self.net.train_phase: True,
self.net.need_pos: True})
# add normalized gradients to summaries
if self.net.summaries and self.norm_grads:
avg_gradients = _update_avg_gradients(avg_gradients, gradients, step)
norm_gradients = [np.linalg.norm(gradient) for gradient in avg_gradients]
self.norm_gradients_node.assign(norm_gradients).eval()
# display mini-batch statistics
if step % display_step == 0:
self.output_minibatch_stats(sess, summary_writer, step, batch_x,
util.crop_to_shape(batch_y, pred_shape))
total_loss += loss
# display epoch statistics
self.output_epoch_stats(epoch, total_loss, training_iters, lr)
# save the current model
model_path_per_epoch = os.path.join(model_path, "model_{}.ckpt".format(epoch))
self.net.save(sess, model_path_per_epoch, latest_filename='model_{}_checkpoint'.format(epoch))
self.net.save(sess, goon_path, latest_filename='goon_checkpoint')
# visualize and display validation performance and metrics
acc, dice, auc, sens, spec = self.store_prediction(sess, test_x, test_y, test_affine)
print('#################### result of original train data ######################')
self.store_prediction(sess, train_x, train_y, train_affine)
# save the current model if it is the best one hitherto
if epoch > 0 and dice > np.max(test_dice):
save_path = self.net.save(sess, save_path, latest_filename='best_checkpoint')
# store the validation metrics
test_acc = np.hstack((test_acc, acc))
test_dice = np.hstack((test_dice, dice))
test_auc = np.hstack((test_auc, auc))
test_sens = np.hstack((test_sens, sens))
test_spec = np.hstack((test_spec, spec))
logging.info("Optimization Finished!")
return save_path, test_acc, test_dice, test_auc, test_sens, test_spec
def store_prediction(self, sess, batch_x, batch_y, batch_affine):
n = len(batch_y)
loss = np.zeros([n])
dice = np.zeros([n])
batch_pred = []
sess.run(tf.local_variables_initializer())
for i in range(n):
pred = sess.run(self.net.predictor, feed_dict={self.net.x: batch_x[i],
self.net.y: batch_y[i],
self.net.p: self.p_dummy,
self.net.dropout_rate: 0.,
self.net.train_phase: False,
self.net.need_pos: False})
pred_shape = pred.shape
batch_pred.append(pred)
loss[i], dice[i] = sess.run([self.net.cost, self.net.dice_score],
feed_dict={self.net.x: batch_x[i],
self.net.y: util.crop_to_shape(batch_y[i], pred_shape),
self.net.p: self.p_dummy,
self.net.dropout_rate: 0.,
self.net.train_phase: False,
self.net.need_pos: False})
batch_x[i] = np.expand_dims(batch_x[i], axis=0).transpose((0, 2, 3, 1, 4))
batch_y[i] = np.expand_dims(batch_y[i], axis=0).transpose((0, 2, 3, 1, 4))
batch_pred[i] = np.expand_dims(batch_pred[i], axis=0).transpose((0, 2, 3, 1, 4))
acc, auc, sens, spec = sess.run([self.net.acc, self.net.auc, self.net.sens, self.net.spec])
logging.info(
"Validation Error= {:.2f}%, Loss= {:.4f}, Dice score= {:.4f}, AUC= {:.4f}, Sensitivity= {:.2f}%, "
"Specificity= {:.2f}% ".format(
(1 - acc) * 100, np.mean(loss), np.mean(dice), auc, sens * 100, spec * 100))
util.save_prediction(batch_x, batch_y, batch_pred, self.prediction_path)
util.save_prediction_1(batch_pred, batch_affine, self.prediction_path)
for i in range(n):
batch_x[i] = np.squeeze(batch_x[i], axis=0).transpose((2, 0, 1, 3))
batch_y[i] = np.squeeze(batch_y[i], axis=0).transpose((2, 0, 1, 3))
return acc, np.mean(dice), auc, sens, spec
def output_epoch_stats(self, epoch, total_loss, training_iters, lr):
logging.info(
"Epoch {:}, Average Loss: {:.4f}, learning rate: {:.1e}".format(epoch, (total_loss / training_iters), lr))
def output_minibatch_stats(self, sess, summary_writer, step, batch_x, batch_y):
# Calculate batch loss and accuracy
sess.run(tf.local_variables_initializer())
summary_str, loss, dice = sess.run([self.summary_op, self.net.cost,
self.net.dice_score],
feed_dict={self.net.x: batch_x, self.net.y: batch_y,
self.net.p: self.p_dummy,
self.net.dropout_rate: 0.,
self.net.train_phase: True,
self.net.need_pos: False})
acc, auc, sens, spec = sess.run([self.net.acc, self.net.auc, self.net.sens, self.net.spec])
summary_writer.add_summary(summary_str, step)
summary_writer.flush()
logging.info(
"Iter {:}, Mini-batch Loss= {:.4f}, Accuracy= {:.2f}%, Dice score= {:.4f}, "
"AUC= {:.4f}, Sensitivity= {:.2f}%, Specificity= {:.2f}%".format(
step, loss, acc * 100, dice, auc, sens * 100, spec * 100))
def _update_avg_gradients(avg_gradients, gradients, step):
if avg_gradients is None:
avg_gradients = [np.zeros_like(gradient) for gradient in gradients]
for i in range(len(gradients)):
avg_gradients[i] = (avg_gradients[i] * (1.0 - (1.0 / (step + 1)))) + (gradients[i] / (step + 1))
return avg_gradients
def acc_rate(predictions, labels):
"""
Return the error rate based on dense predictions and labels.
:param predictions: list of output predictions
:param labels: list of ground truths
"""
assert len(predictions) == len(labels), "Number of predictions and labels don't equal."
err = np.array([])
n = len(predictions)
for i in range(n):
err = np.hstack((err, (100.0 * np.average(
np.argmax(predictions[i], -1) == np.argmax(util.crop_to_shape(labels[i], predictions[i].shape), -1)))))
return err
def auc_score(predictions, labels):
"""
Return the auc score based on dense predictions and labels.
:param predictions: list of output predictions
:param labels: list of ground truths
"""
assert len(predictions) == len(labels), "Number of predictions and labels don't equal."
auc = np.array([])
n = len(predictions)
n_class = labels[0].shape[-1]
for i in range(n):
flat_score = np.reshape(predictions[i], [-1, n_class])
flat_true = np.reshape(util.crop_to_shape(labels[i], predictions[i].shape), [-1, n_class])
auc = np.hstack((auc, roc_auc_score(flat_true, flat_score)))
return auc
# def dice_score(predictions, labels):
# """
# Return the dice score based on dense predictions and labels.
# :param predictions: list of output predictions
# :param labels: list of ground truths
# """
# assert len(predictions) == len(labels), "Number of predictions and labels don't equal."
# dice = np.array([])
# n = len(predictions)
# eps = 1.
# for i in range(n):
# pred = np.array(predictions[i])
# label = np.array(labels[i])
# mask = np.where(np.equal(np.max(pred, -1, keepdims=True), pred),
# np.ones_like(pred),
# np.zeros_like(pred))
# intersection = np.sum(mask[..., 1:] * util.crop_to_shape(label, pred.shape)[..., 1:])
# union = eps + np.sum(mask[..., 1:] + util.crop_to_shape(label, pred.shape)[..., 1:])
# dice = np.hstack((dice, 2 * intersection / union))
# return dice
def dice_score(predictions, labels):
"""
Return the dice score based on dense predictions and labels.
:param predictions: list of output predictions
:param labels: list of ground truths
"""
assert len(predictions) == len(labels), "Number of predictions and labels don't equal."
n_class = labels[0].shape[-1]
dice = np.array([])
n = len(predictions)
eps = 1.
for i in range(n):
pred = np.array(predictions[i])
label = util.crop_to_shape(np.array(labels[i]), pred.shape)
mask = np.where(np.equal(np.max(pred, -1, keepdims=True), pred),
np.ones_like(pred),
np.zeros_like(pred))
d = 0.
for k in range(1, n_class):
numerator = 2 * np.sum(mask[..., k] * label[..., k])
denominator = np.sum(mask[..., k] + label[..., k])
d += numerator / (eps + denominator)
dice = np.hstack((dice, d / (n_class-1)))
return dice
def get_image_summary(img, idx=0):
"""
Make an image summary for 4d tensor image with index idx
"""
V = tf.slice(img, (0, 0, 0, idx), (1, -1, -1, 1))
V -= tf.reduce_min(V)
V /= tf.reduce_max(V)
V *= 255
img_w = tf.shape(img)[1]
img_h = tf.shape(img)[2]
V = tf.reshape(V, tf.stack((img_w, img_h, 1)))
V = tf.transpose(V, (2, 0, 1))
V = tf.reshape(V, tf.stack((-1, img_w, img_h, 1)))
return V
def _compute_gradients(tensor, var_list):
grads = tf.gradients(tensor, var_list)
return [grad if grad is not None else tf.zeros_like(var)
for var, grad in zip(var_list, grads)]