[1ee192]: / core / image_util.py

Download this file

436 lines (357 with data), 17.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""
author: Xinzhe Luo
"""
from __future__ import print_function, division, absolute_import, unicode_literals
import os
import glob
import re
import numpy as np
from PIL import Image
import nibabel as nib
import tensorflow as tf
class BaseDataProvider(object):
"""
Abstract base class for DataProvider implementation. Subclasses have to
overwrite the `_next_data` method that load the next data and label array.
This implementation automatically clips the data with the given min/max and
normalizes the values to (0,1]. To change this behavoir the `_process_data`
method can be overwritten. To enable some post processing such as data
augmentation the `_post_process` method can be overwritten.
:param a_min: (optional) min value used for clipping
:param a_max: (optional) max value used for clipping
"""
channels = 3
n_class = 4
def __init__(self, a_min=None, a_max=None):
self.a_min = a_min if a_min is not None else -np.inf
self.a_max = a_max if a_min is not None else np.inf
def _load_data_and_label(self):
data, label, affine = self._next_data()
train_data = self._process_data(data)
if self.inference_phase:
labels = self._process_labels_3d(label)
else:
labels = self._process_labels_2d(label)
train_data, labels = self._post_process(train_data, labels)
nx = train_data.shape[0]
ny = train_data.shape[1]
nz = train_data.shape[2]
if self.inference_phase:
return train_data.reshape(1, nx, ny, nz, self.channels), labels.reshape(1, nx, ny, nz, self.n_class), affine
else:
return train_data.reshape(1, nx, ny, self.channels), labels.reshape(1, nx, ny, self.n_class), affine
def _process_labels_2d(self, label):
"""
processed labels for 2d training.
:param label: expected dim [height, width, 1]
:return: one-hot labels with dim [height, width, n_class]
"""
label = np.squeeze(label, axis=-1)
nx = label.shape[0]
ny = label.shape[1]
labels = np.zeros((nx, ny, self.n_class), dtype=np.float32)
for k in range(self.n_class):
labels[..., k][label == self.label_intensity[k]] = 1
return labels
def _process_labels_3d(self, label):
"""
processed labels for 3d inference.
:param label: expected dim [height, width, slices]
:return: one-hot labels with dim [height, width, slices, n_class]
"""
nx = label.shape[0]
ny = label.shape[1]
nz = label.shape[2]
labels = np.zeros((nx, ny, nz, self.n_class), dtype=np.float32)
for k in range(self.n_class):
labels[..., k][label == self.label_intensity[k]] = 1
return labels
def _process_data(self, data):
"""
processed data for both situation.
:param data: epected dim [height, width, 1] or [height, width, slices]
:return: normalized data with the same dimensions.
"""
data = np.clip(np.fabs(data), self.a_min, self.a_max)
'''
# max-min normalization
data -= np.amin(data)
data /= np.amax(data)
'''
# z-score normalization
eps = 1e-5
data = (data - np.mean(data)) / (np.std(data)+eps)
return data
def _post_process(self, data, labels):
"""
Post processing hook that can be used for data augmentation
:param data: the data array
:param labels: the label array
"""
'''
data = tf.convert_to_tensor(data, dtype=tf.float32)
labels = tf.convert_to_tensor(labels, dtype=tf.float32)
concat_image = tf.concat([tf.expand_dims(data, -1), tf.expand_dims(labels, -1)], axis=-1)
maybe_flipped = tf.image.random_flip_left_right(concat_image)
maybe_flipped = tf.image.random_flip_up_down(maybe_flipped)
data = maybe_flipped[..., :1]
labels = maybe_flipped[..., 1:]
data = tf.image.random_brightness(data, 0.2)
# labels = tf.image.random_brightness(labels, 0.7)
'''
return data, labels
def __call__(self, n):
if self.crop_patch:
train_data, labels, affine = self._load_data_and_label()
nx = train_data.shape[1]
ny = train_data.shape[2]
nz = train_data.shape[3]
X = np.zeros((n, nx, ny, self.channels))
Y = np.zeros((n, nx, ny, self.n_class))
Z = [affine]
X[0] = train_data
Y[0] = labels
for i in range(1, n):
train_data, labels, affine = self._load_data_and_label()
X[i] = train_data
Y[i] = labels
Z.append(affine)
else:
X = []
Y = []
Z = []
for _ in range(n):
train_data, labels, affine = self._load_data_and_label()
train_data = np.squeeze(train_data, axis=0).transpose((2, 0, 1, 3))
labels = np.squeeze(labels, axis=0).transpose((2, 0, 1, 3))
X.append(train_data)
Y.append(labels)
Z.append(affine)
assert len(X[0].shape) == 4 and len(Y[0].shape) == 4, "Not the right dimension for input data!"
return X, Y, Z
class SimpleDataProvider(BaseDataProvider):
"""
A simple data provider for numpy arrays.
Assumes that the data and label are numpy array with the dimensions
data `[n, X, Y, channels]`, label `[n, X, Y, classes]`. Where
`n` is the number of images, `X`, `Y` the size of the image.
:param data: data numpy array. Shape=[n, X, Y, channels]
:param label: label numpy array. Shape=[n, X, Y, classes]
:param a_min: (optional) min value used for clipping
:param a_max: (optional) max value used for clipping
:param channels: (optional) number of channels, default=1
:param n_class: (optional) number of classes, default=2
"""
def __init__(self, data, label, a_min=None, a_max=None, channels=1, n_class=2):
super(SimpleDataProvider, self).__init__(a_min, a_max)
self.data = data
self.label = label
self.file_count = data.shape[0]
self.n_class = n_class
self.channels = channels
def _next_data(self):
idx = np.random.choice(self.file_count)
return self.data[idx], self.label[idx]
class ImageDataProvider(BaseDataProvider):
"""
Generic data provider for images, supports gray scale and colored images.
Assumes that the data images and label images are stored in the same folder
and that the labels have a different file prefix
e.g. 'train/fish_1.tif' and 'train/fish_1_label.tif'
Usage:
data_provider = ImageDataProvider("..fishes/train/*.tif")
:param search_path: a glob search pattern to find all data and label images
:param a_min: (optional) min value used for clipping
:param a_max: (optional) max value used for clipping
:param data_suffix: suffix pattern for the data images. Default '.tif'
:param label_suffix: suffix pattern for the label images. Default '_label.tif'
:param shuffle_data: if the order of the loaded file path should be randomized. Default 'True'
:param crop_patch: if patches of a certain size need to be cropped for training. Default 'True'
:param patch_size: size of the patch. Default '(64, 64, 64)', set -1 for axes not to be cropped
:param center_roi:
:param channels: (optional) number of channels, default=1
:param n_class: (optional) number of classes, default=2
:param contain_foreground: if the patch should contain foreground, default=False.
:param label_intensity: list of intensities of the ground truth
"""
def __init__(self, search_path, inference_phase, a_min=None, a_max=None, data_suffix=".tif", label_suffix='_label.tif',
shuffle_data=True, crop_patch=True, center_crop=False, patch_size=(64, 64, 64), center_roi=(80, 80, 1), channels=3, n_class=4,
contain_foreground=False, label_intensity=(0, 420)):
super(ImageDataProvider, self).__init__(a_min, a_max)
self.data_suffix = data_suffix
self.label_suffix = label_suffix
self.file_index = -1
self.shuffle_data = shuffle_data
self.crop_patch = crop_patch
self.center_crop = center_crop
self.patch_size = patch_size
self.center_roi = center_roi
self.n_class = n_class
self.channels = channels
self.contain_foreground = contain_foreground
self.label_intensity = label_intensity
self.inference_phase = inference_phase
self.data_files = self._find_data_files(search_path)
if self.shuffle_data:
np.random.shuffle(self.data_files)
assert len(self.data_files) > 0, "No training files"
assert len(self.label_intensity) == self.n_class, "Number of label intensities don't epual to number of classes"
print("Number of files used: %s" % len(self.data_files))
def reset_index(self):
self.file_index = -1
def _find_data_files(self, search_path):
all_files = strsort(glob.glob(search_path))
return [name for name in all_files if self.data_suffix in name and self.label_suffix not in name]
def _load_file_2d(self, path, dtype=np.float32):
"""
load files from raw type .png
read .png, get shape [height, width]
:param path: read from this path
:param dtype: set the data type of object
:return: ndarray of data
"""
img = Image.open(path)
img_array = np.array(img, dtype)
return img_array.transpose((1, 0))
def _load_file_3d(self, path, dtype=np.float32):
"""
read .nii.gz, get shape [height, width, slices]
:param path: read from this path
:param dtype: set the data type of object
:return: ndarray of data and its affine matrix
"""
img = nib.load(path)
img_array = img.get_fdata(dtype=dtype)
if 'lab' in path:
img_array[:][img_array == 200] = 200
img_array[:][img_array == 500] = 244
img_array[:][img_array == 600] = 88
# print(np.unique(img_array))
return img_array.transpose((1, 0, 2)), img.affine
def _cycle_file(self):
self.file_index += 1
if self.file_index >= len(self.data_files):
self.file_index = 0
if self.shuffle_data:
np.random.shuffle(self.data_files)
def _next_data(self):
"""
processed the data from dimension view
:return: if center_crop, return [roi_height, roi_width, 1] or [roi_height, roi_width, slices]
"""
self._cycle_file()
image_name = self.data_files[self.file_index]
label_name = image_name.replace(self.data_suffix, self.label_suffix)
if self.inference_phase:
label, affine = self._load_file_3d(label_name, np.float32)
image, _ = self._load_file_3d(image_name, np.float32)
else:
label = self._load_file_2d(label_name, np.float32)
image = self._load_file_2d(image_name, np.float32)
label = np.expand_dims(label, axis=-1)
image = np.expand_dims(image, axis=-1)
affine = None
if self.center_crop:
assert np.all(np.array(self.center_roi) <= np.array(label.shape)), print(
'Patch size exceeds dimensions.')
center = compute_center(label)
where_are_nan = np.isnan(center)
center[where_are_nan] = int(label.shape[0] // 2)
x = np.array([center[i][0] for i in range(label.shape[-1])]).astype(np.int)
y = np.array([center[i][1] for i in range(label.shape[-1])]).astype(np.int)
x = x[0]
y = y[0]
beginx = x - self.center_roi[0]
beginy = y - self.center_roi[1]
endx = x + self.center_roi[0]
endy = y + self.center_roi[1]
gt = label[beginx:endx, beginy:endy, :]
img = image[beginx:endx, beginy:endy, :]
elif self.crop_patch:
assert np.all(np.array(self.patch_size) <= np.array(label.shape)), print('Patch size exceeds dimensions.')
x = np.random.randint(self.patch_size[0] // 2,
label.shape[0] + self.patch_size[0] // 2 - self.patch_size[0] + 1)
y = np.random.randint(self.patch_size[1] // 2,
label.shape[1] + self.patch_size[1] // 2 - self.patch_size[1] + 1)
z = np.random.randint(self.patch_size[2] // 2,
label.shape[2] + self.patch_size[2] // 2 - self.patch_size[2] + 1)
begin = np.where(np.equal(self.patch_size, -1), 0, [x - self.patch_size[0] // 2,
y - self.patch_size[1] // 2,
z - self.patch_size[2] // 2])
end = np.where(np.equal(self.patch_size, -1), [label.shape[0],
label.shape[1],
label.shape[2]],
[x + self.patch_size[0] - self.patch_size[0] // 2,
y + self.patch_size[1] - self.patch_size[1] // 2,
z + self.patch_size[2] - self.patch_size[2] // 2])
gt = label[begin[0]:end[0], begin[1]:end[1], begin[2]:end[2]]
img = image[begin[0]:end[0], begin[1]:end[1], begin[2]:end[2]]
else:
gt = label
img = image
if self.contain_foreground:
while not np.any([gt == k for k in self.label_intensity[1:]]):
self._cycle_file()
image_name = self.data_files[self.file_index]
label_name = image_name.replace(self.data_suffix, self.label_suffix)
if self.inference_phase:
label, affine = self._load_file_3d(label_name, np.float32)
image, _ = self._load_file_3d(image_name, np.float32)
else:
label = self._load_file_2d(label_name, np.float32)
image = self._load_file_2d(image_name, np.float32)
label = np.expand_dims(label, axis=-1)
image = np.expand_dims(image, axis=-1)
if self.center_crop:
assert np.all(np.array(self.center_roi) <= np.array(label.shape)), print(
'Patch size exceeds dimensions.')
center = compute_center(label)
where_are_nan = np.isnan(center)
center[where_are_nan] = int(label.shape[0] // 2)
x = np.array([center[i][0] for i in range(label.shape[-1])]).astype(np.int)
y = np.array([center[i][1] for i in range(label.shape[-1])]).astype(np.int)
x = x[0]
y = y[0]
beginx = x - self.center_roi[0]
beginy = y - self.center_roi[1]
endx = x + self.center_roi[0]
endy = y + self.center_roi[1]
gt = label[beginx:endx, beginy:endy, :]
img = image[beginx:endx, beginy:endy, :]
elif self.crop_patch:
assert np.all(np.array(self.patch_size) <= np.array(label.shape)), print(
'Patch size exceeds dimensions.')
x = np.random.randint(self.patch_size[0] // 2,
label.shape[0] + self.patch_size[0] // 2 - self.patch_size[0] + 1)
y = np.random.randint(self.patch_size[1] // 2,
label.shape[1] + self.patch_size[1] // 2 - self.patch_size[1] + 1)
z = np.random.randint(self.patch_size[2] // 2,
label.shape[2] + self.patch_size[2] // 2 - self.patch_size[2] + 1)
begin = np.where(np.equal(self.patch_size, -1), 0, [x - self.patch_size[0] // 2,
y - self.patch_size[1] // 2,
z - self.patch_size[2] // 2])
end = np.where(np.equal(self.patch_size, -1), [label.shape[0],
label.shape[1],
label.shape[2]],
[x + self.patch_size[0] - self.patch_size[0] // 2,
y + self.patch_size[1] - self.patch_size[1] // 2,
z + self.patch_size[2] - self.patch_size[2] // 2])
gt = label[begin[0]:end[0], begin[1]:end[1], begin[2]:end[2]]
img = image[begin[0]:end[0], begin[1]:end[1], begin[2]:end[2]]
else:
gt = label
img = image
return img, gt, affine
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
"""
alist.sort(key=natural_keys) sorts in human order
"""
return [atoi(c) for c in re.split('(\d+)', text)]
def strsort(alist):
alist.sort(key=natural_keys)
return alist
def compute_center(label):
points = np.where(label > 0)
return np.array([[np.average(points[0][points[2] == j]), np.average(points[1][points[2] == j])] for j in range(label.shape[-1])])