[72db80]: / utils.py

Download this file

186 lines (139 with data), 6.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import json
import torch
import glob
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from imgaug import augmenters as iaa
from imgaug.augmentables.segmaps import SegmentationMapsOnImage
import numpy as np
def create_nested_dir(log_path):
# Create the experiment directory if not present
if not os.path.isdir(log_path):
os.makedirs(log_path)
os.makedirs(os.path.join(log_path, 'checkpoint'))
def load_dataset_dist():
with open(os.path.join('configuration', 'cases_division.json'), 'r') as f:
dataset = json.load(f)
return dataset
def get_data_loaders(data_aug, cases, dataset_dir, batch_size):
dataloaders = {}
dataloaders['Train'] = get_dataset(
dataset_dir, data_aug, cases=cases['train'], balanced_filelist=None, batch_size=batch_size)
dataloaders['Valid'] = get_dataset(
dataset_dir, 'none', cases=cases['valid'], batch_size=batch_size)
return dataloaders
def get_dataset(data_dir, data_aug, cases=[], balanced_filelist=None, imageFolder='Images', maskFolder='Masks', batch_size=4):
data_transforms = {
'Train': transforms.Compose([ToTensor()]),
'Test': transforms.Compose([ToTensor()]),
}
image_dataset = SegNumpyDataset(
data_aug=data_aug, root_dir=data_dir, cases=cases, transform=data_transforms['Train'], maskFolder=maskFolder, imageFolder=imageFolder, balanced_filelist=balanced_filelist)
dataloader = DataLoader(
image_dataset, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4)
return dataloader
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample, maskresize=None, imageresize=None):
image, mask = sample['image'], sample['mask']
if len(mask.shape) == 2:
mask = mask.reshape((1,)+mask.shape)
if len(image.shape) == 2:
image = image.reshape((1,)+image.shape)
return {'image': torch.from_numpy(image).float(),
'mask': torch.from_numpy(mask).float()}
class SegNumpyDataset(Dataset):
"""Segmentation Dataset"""
def __init__(self, root_dir, cases, imageFolder, maskFolder, data_aug, cases_number_format=False, transform=None, balanced_filelist=None):
self.in_channels = 3
self.root_dir = root_dir
self.transform = transform
self.data_aug = data_aug
if cases_number_format:
cases_names = ["case_{:05d}".format(i) for i in cases]
else:
cases_names = cases
image_names = []
mask_names = []
if balanced_filelist is None:
for case in cases_names:
image_names.extend(glob.glob(os.path.join(
self.root_dir, case, imageFolder, '*')))
mask_names.extend(glob.glob(os.path.join(
self.root_dir, case, maskFolder, '*')))
else:
# Essa condição é necessária, pois no data aug offline o nome dos arquivos muda.
if data_aug != 'offline':
for case in cases_names:
image_list = set(os.listdir(os.path.join(
self.root_dir, case, imageFolder)))
set_balanced = set(balanced_filelist)
image_list = list(set_balanced.intersection(image_list))
fullpath_image_list = [os.path.join(self.root_dir, case, imageFolder, x)
for x in image_list]
fullpath_mask_list = [os.path.join(self.root_dir, case, maskFolder, "masc_"+str(x))
for x in image_list]
image_names.extend(fullpath_image_list)
mask_names.extend(fullpath_mask_list)
else:
for case in cases_names:
image_list = set(os.listdir(os.path.join(
self.root_dir, case, imageFolder)))
balanced_filelist_aug = []
# adiciona os data aug manualmente
for fl in balanced_filelist:
for i in range(0, 5):
# case_00000-0-aug-0
balanced_filelist_aug.append(
"{}-aug-{}.npz".format(fl.replace(".npz", ""), i))
set_balanced = set(balanced_filelist_aug)
image_list = list(set_balanced.intersection(image_list))
fullpath_image_list = [os.path.join(self.root_dir, case, imageFolder, x)
for x in image_list]
fullpath_mask_list = [os.path.join(self.root_dir, case, maskFolder, "masc_"+str(x))
for x in image_list]
image_names.extend(fullpath_image_list)
mask_names.extend(fullpath_mask_list)
self.image_names = sorted(image_names)
self.mask_names = sorted(mask_names)
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
image = np.load(self.image_names[idx])
mask = np.load(self.mask_names[idx])
__, file_extension = os.path.splitext(self.image_names[idx])
if file_extension == '.npz':
image = image['arr_0']
mask = mask['arr_0']
if self.in_channels == 1:
image = image[1]
if self.data_aug == 'online':
segmap = SegmentationMapsOnImage(mask, shape=(256, 256))
seq = iaa.Sequential([
iaa.Affine(
scale=(0.5, 1.2),
rotate=(-15, 15)
), # rotate the image
iaa.Flipud(0.5),
iaa.PiecewiseAffine(scale=(0.01, 0.05)),
iaa.Sometimes(
0.1,
iaa.GaussianBlur((0.1, 1.5)),
),
iaa.Sometimes(
0.1,
iaa.LinearContrast((0.5, 2.0), per_channel=0.5),
)
])
image = image.transpose(1, 2, 0)
# Apply augmentations for image and mask
image, mask = seq(image=image, segmentation_maps=segmap)
image = image.copy()
mask = mask.copy()
image = image.transpose(2, 0, 1)
mask = mask.get_arr()
sample = {'image': image, 'mask': mask}
if self.transform:
sample = self.transform(sample)
return sample