import os
import json
import torch
import glob
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from imgaug import augmenters as iaa
from imgaug.augmentables.segmaps import SegmentationMapsOnImage
import numpy as np
def create_nested_dir(log_path):
# Create the experiment directory if not present
if not os.path.isdir(log_path):
os.makedirs(log_path)
os.makedirs(os.path.join(log_path, 'checkpoint'))
def load_dataset_dist():
with open(os.path.join('configuration', 'cases_division.json'), 'r') as f:
dataset = json.load(f)
return dataset
def get_data_loaders(data_aug, cases, dataset_dir, batch_size):
dataloaders = {}
dataloaders['Train'] = get_dataset(
dataset_dir, data_aug, cases=cases['train'], balanced_filelist=None, batch_size=batch_size)
dataloaders['Valid'] = get_dataset(
dataset_dir, 'none', cases=cases['valid'], batch_size=batch_size)
return dataloaders
def get_dataset(data_dir, data_aug, cases=[], balanced_filelist=None, imageFolder='Images', maskFolder='Masks', batch_size=4):
data_transforms = {
'Train': transforms.Compose([ToTensor()]),
'Test': transforms.Compose([ToTensor()]),
}
image_dataset = SegNumpyDataset(
data_aug=data_aug, root_dir=data_dir, cases=cases, transform=data_transforms['Train'], maskFolder=maskFolder, imageFolder=imageFolder, balanced_filelist=balanced_filelist)
dataloader = DataLoader(
image_dataset, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4)
return dataloader
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample, maskresize=None, imageresize=None):
image, mask = sample['image'], sample['mask']
if len(mask.shape) == 2:
mask = mask.reshape((1,)+mask.shape)
if len(image.shape) == 2:
image = image.reshape((1,)+image.shape)
return {'image': torch.from_numpy(image).float(),
'mask': torch.from_numpy(mask).float()}
class SegNumpyDataset(Dataset):
"""Segmentation Dataset"""
def __init__(self, root_dir, cases, imageFolder, maskFolder, data_aug, cases_number_format=False, transform=None, balanced_filelist=None):
self.in_channels = 3
self.root_dir = root_dir
self.transform = transform
self.data_aug = data_aug
if cases_number_format:
cases_names = ["case_{:05d}".format(i) for i in cases]
else:
cases_names = cases
image_names = []
mask_names = []
if balanced_filelist is None:
for case in cases_names:
image_names.extend(glob.glob(os.path.join(
self.root_dir, case, imageFolder, '*')))
mask_names.extend(glob.glob(os.path.join(
self.root_dir, case, maskFolder, '*')))
else:
# Essa condição é necessária, pois no data aug offline o nome dos arquivos muda.
if data_aug != 'offline':
for case in cases_names:
image_list = set(os.listdir(os.path.join(
self.root_dir, case, imageFolder)))
set_balanced = set(balanced_filelist)
image_list = list(set_balanced.intersection(image_list))
fullpath_image_list = [os.path.join(self.root_dir, case, imageFolder, x)
for x in image_list]
fullpath_mask_list = [os.path.join(self.root_dir, case, maskFolder, "masc_"+str(x))
for x in image_list]
image_names.extend(fullpath_image_list)
mask_names.extend(fullpath_mask_list)
else:
for case in cases_names:
image_list = set(os.listdir(os.path.join(
self.root_dir, case, imageFolder)))
balanced_filelist_aug = []
# adiciona os data aug manualmente
for fl in balanced_filelist:
for i in range(0, 5):
# case_00000-0-aug-0
balanced_filelist_aug.append(
"{}-aug-{}.npz".format(fl.replace(".npz", ""), i))
set_balanced = set(balanced_filelist_aug)
image_list = list(set_balanced.intersection(image_list))
fullpath_image_list = [os.path.join(self.root_dir, case, imageFolder, x)
for x in image_list]
fullpath_mask_list = [os.path.join(self.root_dir, case, maskFolder, "masc_"+str(x))
for x in image_list]
image_names.extend(fullpath_image_list)
mask_names.extend(fullpath_mask_list)
self.image_names = sorted(image_names)
self.mask_names = sorted(mask_names)
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
image = np.load(self.image_names[idx])
mask = np.load(self.mask_names[idx])
__, file_extension = os.path.splitext(self.image_names[idx])
if file_extension == '.npz':
image = image['arr_0']
mask = mask['arr_0']
if self.in_channels == 1:
image = image[1]
if self.data_aug == 'online':
segmap = SegmentationMapsOnImage(mask, shape=(256, 256))
seq = iaa.Sequential([
iaa.Affine(
scale=(0.5, 1.2),
rotate=(-15, 15)
), # rotate the image
iaa.Flipud(0.5),
iaa.PiecewiseAffine(scale=(0.01, 0.05)),
iaa.Sometimes(
0.1,
iaa.GaussianBlur((0.1, 1.5)),
),
iaa.Sometimes(
0.1,
iaa.LinearContrast((0.5, 2.0), per_channel=0.5),
)
])
image = image.transpose(1, 2, 0)
# Apply augmentations for image and mask
image, mask = seq(image=image, segmentation_maps=segmap)
image = image.copy()
mask = mask.copy()
image = image.transpose(2, 0, 1)
mask = mask.get_arr()
sample = {'image': image, 'mask': mask}
if self.transform:
sample = self.transform(sample)
return sample