--- a +++ b/UNet_CNN_AddUNet.ipynb @@ -0,0 +1,780 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "nDXW7A7pwZ7a" + }, + "source": [ + "# UNET SEGMENTATION (SUJAL)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M5oF6qqZwZ70" + }, + "outputs": [], + "source": [ + "## Imports\n", + "import os\n", + "import sys\n", + "import random\n", + "\n", + "import numpy as np\n", + "import cv2\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "\n", + "## Seeding\n", + "seed = 42\n", + "random.seed = seed\n", + "np.random.seed = seed\n", + "tf.seed = seed" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "70jPovBLwZ7-" + }, + "source": [ + "## Data " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SvRbQp8LwZ8B" + }, + "outputs": [], + "source": [ + " class DataGen(keras.utils.Sequence):\n", + " def __init__(self, ids, path, batch_size=8, image_size=128):\n", + " self.ids = ids\n", + " self.path = path\n", + " self.batch_size = batch_size\n", + " self.image_size = image_size\n", + " self.on_epoch_end()\n", + "\n", + " def __load__(self, id_name):\n", + " # Construct image path\n", + " image_path = os.path.join(self.path, \"images\", id_name)\n", + "\n", + " # Construct mask path\n", + " mask_path = os.path.join(self.path, \"masks\", id_name)\n", + "\n", + " # Read and validate image\n", + " image = cv2.imread(image_path, 1)\n", + " if image is None:\n", + " print(f\"Warning: Failed to load image: {image_path}\")\n", + " return None, None\n", + "\n", + " image = cv2.resize(image, (self.image_size, self.image_size))\n", + "\n", + " # Read and validate mask\n", + " mask = cv2.imread(mask_path, 0) # mask often is a single-channel image\n", + " if mask is None:\n", + " print(f\"Warning: Failed to load mask: {mask_path}\")\n", + " return None, None\n", + "\n", + " mask = cv2.resize(mask, (self.image_size, self.image_size))\n", + " mask = np.expand_dims(mask, axis=-1)\n", + "\n", + " # Normalize\n", + " image = image / 255.0\n", + " mask = mask / 255.0\n", + "\n", + " return image, mask\n", + "\n", + " def __getitem__(self, index):\n", + " if (index + 1) * self.batch_size > len(self.ids):\n", + " self.batch_size = len(self.ids) - index * self.batch_size\n", + "\n", + " files_batch = self.ids[index * self.batch_size: (index + 1) * self.batch_size]\n", + "\n", + " image = []\n", + " mask = []\n", + "\n", + " for id_name in files_batch:\n", + " _img, _mask = self.__load__(id_name)\n", + " if _img is not None and _mask is not None: # Only add valid samples\n", + " image.append(_img)\n", + " mask.append(_mask)\n", + "\n", + " if len(image) == 0: # Handle case where all files in the batch fail\n", + " raise ValueError(\"No valid images or masks found in the current batch.\")\n", + "\n", + " image = np.array(image)\n", + " mask = np.array(mask)\n", + "\n", + " return image, mask\n", + "\n", + " def on_epoch_end(self):\n", + " pass\n", + "\n", + " def __len__(self):\n", + " return int(np.ceil(len(self.ids) / float(self.batch_size)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rUG6cDK1wZ8I" + }, + "source": [ + "## Hyperparameters" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2QwbWknPwZ8M" + }, + "outputs": [], + "source": [ + "image_size = 128\n", + "train_path = \"/Users/sandhyakilari/Desktop/Fall Semester 2024/Computer Vision/Segmentation Project\"\n", + "epochs = 30\n", + "batch_size = 8\n", + "\n", + "## Training Ids\n", + "train_ids = os.listdir(os.path.join(train_path, \"images\"))\n", + "\n", + "\n", + "## Validation Data Size\n", + "val_data_size = 10\n", + "\n", + "valid_ids = train_ids[:val_data_size]\n", + "train_ids = train_ids[val_data_size:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6_cMh29vwZ8R", + "outputId": "534e3fce-2174-4f8d-99d3-c19550f24f70" + }, + "outputs": [], + "source": [ + "gen = DataGen(train_ids, train_path, batch_size=batch_size, image_size=image_size)\n", + "x, y = gen.__getitem__(0)\n", + "print(x.shape, y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 309 + }, + "id": "NCG2jWo9wZ8c", + "outputId": "f158147f-b3b7-4c7f-e0a0-13219d136aa7", + "scrolled": false + }, + "outputs": [], + "source": [ + "r = random.randint(0, len(x)-1)\n", + "\n", + "fig = plt.figure()\n", + "fig.subplots_adjust(hspace=0.4, wspace=0.4)\n", + "ax = fig.add_subplot(1, 2, 1)\n", + "ax.imshow(x[r])\n", + "ax = fig.add_subplot(1, 2, 2)\n", + "ax.imshow(np.reshape(y[r], (image_size, image_size)), cmap=\"gray\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1xJMvRqswZ8o" + }, + "source": [ + "## Different Convolutional Blocks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xtA9Rr75wZ8p" + }, + "outputs": [], + "source": [ + "def down_block(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n", + " c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation=\"relu\")(x)\n", + " c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation=\"relu\")(c)\n", + " p = keras.layers.MaxPool2D((2, 2), (2, 2))(c)\n", + " return c, p\n", + "\n", + "def up_block(x, skip, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n", + " us = keras.layers.UpSampling2D((2, 2))(x)\n", + " concat = keras.layers.Concatenate()([us, skip])\n", + " c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation=\"relu\")(concat)\n", + " c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation=\"relu\")(c)\n", + " return c\n", + "\n", + "def bottleneck(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n", + " c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation=\"relu\")(x)\n", + " c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation=\"relu\")(c)\n", + " return c" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QMdNQ_HVwZ82" + }, + "source": [ + "## UNet Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YAa1RbB8wZ89" + }, + "outputs": [], + "source": [ + "def UNet():\n", + " f = [16, 32, 64, 128, 256]\n", + " inputs = keras.layers.Input((image_size, image_size, 3))\n", + "\n", + " p0 = inputs\n", + " c1, p1 = down_block(p0, f[0]) # 128 --> 64\n", + " c2, p2 = down_block(p1, f[1]) # 64 --> 32\n", + " c3, p3 = down_block(p2, f[2]) # 32 --> 16\n", + " c4, p4 = down_block(p3, f[3]) # 16 --> 8\n", + "\n", + " bn = bottleneck(p4, f[4])\n", + "\n", + " u1 = up_block(bn, c4, f[3]) # 8 --> 16\n", + " u2 = up_block(u1, c3, f[2]) # 16 --> 32\n", + " u3 = up_block(u2, c2, f[1]) # 32 --> 64\n", + " u4 = up_block(u3, c1, f[0]) # 64 --> 128\n", + "\n", + " outputs = keras.layers.Conv2D(1, (1, 1), padding=\"same\", activation=\"sigmoid\")(u4)\n", + " model = keras.models.Model(inputs, outputs)\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "ntBPY06awZ9E", + "outputId": "bc8241cf-1ca4-46a5-ddf1-afcb43ddc395", + "scrolled": true + }, + "outputs": [], + "source": [ + "model = UNet()\n", + "model.compile(optimizer=\"adam\", loss=\"binary_crossentropy\", metrics=[\"acc\"])\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Nmkxq4-BwZ9Q" + }, + "source": [ + "## Training the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6I34e4tcwZ9T", + "outputId": "427bd73a-0c95-4b03-ce95-6584de960233", + "scrolled": false + }, + "outputs": [], + "source": [ + "train_gen = DataGen(train_ids, train_path, image_size=image_size, batch_size=batch_size)\n", + "valid_gen = DataGen(valid_ids, train_path, image_size=image_size, batch_size=batch_size)\n", + "\n", + "train_steps = len(train_ids)//batch_size\n", + "valid_steps = len(valid_ids)//batch_size\n", + "\n", + "history = model.fit(train_gen, validation_data=valid_gen, steps_per_epoch=train_steps,\n", + " validation_steps=valid_steps, epochs=epochs)\n", + "\n", + "# Save the weights\n", + "model.save_weights(\"UNetW.weights.h5\")\n", + "\n", + "# Plot training & validation accuracy and loss\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "num_epochs = min(len(acc), len(val_acc))\n", + "epochs_range = range(1, num_epochs + 1)\n", + "\n", + "plt.figure(figsize=(16, 6))\n", + "\n", + "# Accuracy plot\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs_range, acc[:num_epochs], label='Training Accuracy')\n", + "plt.plot(epochs_range, val_acc[:num_epochs], label='Validation Accuracy')\n", + "plt.title('Training & Validation Accuracy')\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend()\n", + "\n", + "# Loss plot\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs_range, loss[:num_epochs], label='Training Loss')\n", + "plt.plot(epochs_range, val_loss[:num_epochs], label='Validation Loss')\n", + "plt.title('Training & Validation Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iDUykT_awZ9h" + }, + "source": [ + "## Testing the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_oY4H3LwZ9l", + "outputId": "371b3f40-25d0-416c-fd0f-e3eb6b0df943" + }, + "outputs": [], + "source": [ + "## Save the Weights\n", + "model.save_weights(\"UNetW.weights.h5\")\n", + "\n", + "## Dataset for prediction\n", + "x, y = valid_gen.__getitem__(2)\n", + "result = model.predict(x)\n", + "\n", + "result = result > 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DLdgSxZKpQcQ" + }, + "outputs": [], + "source": [ + "\n", + "# Load the weights\n", + "model.load_weights(\"UNetW.weights.h5\")\n", + "\n", + "# Now you can use the model for predictions or further training\n", + "x, y = valid_gen.__getitem__(2)\n", + "result = model.predict(x)\n", + "result = result > 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 309 + }, + "id": "uSdH42qVwZ9q", + "outputId": "95c65b4e-5f31-4a9e-88a1-d416166ec239" + }, + "outputs": [], + "source": [ + "fig = plt.figure()\n", + "fig.subplots_adjust(hspace=0.4, wspace=0.4)\n", + "\n", + "ax = fig.add_subplot(1, 2, 1)\n", + "ax.imshow(np.reshape(y[0]*255, (image_size, image_size)), cmap=\"gray\")\n", + "\n", + "ax = fig.add_subplot(1, 2, 2)\n", + "ax.imshow(np.reshape(result[0]*255, (image_size, image_size)), cmap=\"gray\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 309 + }, + "id": "1OKwJGbVwZ-A", + "outputId": "8ef32166-359f-4023-f3a4-f12aeb895db0" + }, + "outputs": [], + "source": [ + "fig = plt.figure()\n", + "fig.subplots_adjust(hspace=0.4, wspace=0.4)\n", + "\n", + "ax = fig.add_subplot(1, 2, 1)\n", + "ax.imshow(np.reshape(y[1]*255, (image_size, image_size)), cmap=\"gray\")\n", + "\n", + "ax = fig.add_subplot(1, 2, 2)\n", + "ax.imshow(np.reshape(result[1]*255, (image_size, image_size)), cmap=\"gray\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CNN Model (Madhurya)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "xBk2k9vzKRD5", + "outputId": "e9880f4e-a1a6-4c3b-aac7-bacca57154e5" + }, + "outputs": [], + "source": [ + "import os\n", + "import cv2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import keras\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Activation, Flatten, Reshape\n", + "from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D\n", + "from keras import regularizers\n", + "\n", + "# Set your data directory\n", + "data_dir = '/Users/sandhyakilari/Desktop/Fall Semester 2024/Computer Vision/Segmentation Project'\n", + "image_dir = os.path.join(data_dir, \"images\")\n", + "mask_dir = os.path.join(data_dir, \"masks\")\n", + "\n", + "# List files\n", + "image_names = sorted(os.listdir(image_dir))\n", + "mask_names = sorted(os.listdir(mask_dir))\n", + "\n", + "image_names = [name for name in image_names if name in mask_names]\n", + "\n", + "# Make sure that image_names and mask_names correspond one-to-one\n", + "# If they differ, ensure file naming consistency before running.\n", + "assert len(image_names) == len(mask_names), \"Number of images and masks do not match.\"\n", + "\n", + "# Desired shapes\n", + "input_image_shape = (64, 64) # For the CNN input\n", + "mask_shape = (32, 32) # For the CNN output\n", + "\n", + "X = []\n", + "Y = []\n", + "\n", + "for img_name, msk_name in zip(image_names, mask_names):\n", + " img_path = os.path.join(image_dir, img_name)\n", + " msk_path = os.path.join(mask_dir, msk_name)\n", + "\n", + " # Read images in grayscale\n", + " img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)\n", + " msk = cv2.imread(msk_path, cv2.IMREAD_GRAYSCALE)\n", + "\n", + " # Resize to desired shapes\n", + " img = cv2.resize(img, input_image_shape)\n", + " msk = cv2.resize(msk, mask_shape)\n", + "\n", + " # Normalize (if you want to normalize)\n", + " img = img.astype(np.float32) / 255.0\n", + " msk = msk.astype(np.float32) / 255.0\n", + "\n", + " # Add channel dimension\n", + " img = np.expand_dims(img, axis=-1) # (64,64,1)\n", + " msk = np.expand_dims(msk, axis=-1) # (32,32,1)\n", + "\n", + " X.append(img)\n", + " Y.append(msk)\n", + "\n", + "X = np.array(X)\n", + "Y = np.array(Y)\n", + "\n", + "print('Dataset shape :', X.shape, Y.shape) # X: (N,64,64,1), Y: (N,32,32,1)\n", + "\n", + "# Create the CNN model\n", + "def create_model(input_shape=(64, 64, 1)):\n", + " \"\"\"\n", + " Simple convnet model: one convolution, one average pooling and one fully connected layer\n", + " ending with a reshape to (32,32,1).\n", + " \"\"\"\n", + " model = Sequential()\n", + " # Conv layer\n", + " model.add(Conv2D(100, (11,11), padding='valid', strides=(1, 1), input_shape=input_shape))\n", + " # Average Pooling\n", + " model.add(AveragePooling2D((6,6)))\n", + " # Flatten/Reshape step\n", + " # After Conv+Pool:\n", + " # Input: (64x64x1) -> Conv(11x11): (54x54x100) -> AvgPool(6x6): (9x9x100) = 8100 features\n", + " model.add(Reshape((8100,))) # Flatten to (8100,)\n", + " model.add(Dense(1024, activation='sigmoid', kernel_regularizer=regularizers.l2(0.0001)))\n", + " # Now we have (1024,). We want (32,32,1):\n", + " # 32*32 = 1024, so we reshape to (32,32,1)\n", + " model.add(Reshape((32,32,1)))\n", + " return model\n", + "\n", + "m = create_model()\n", + "m.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])\n", + "print('Model Summary:')\n", + "m.summary()\n", + "\n", + "# Train the model\n", + "epochs = 20\n", + "batch_size = 16\n", + "history = m.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_split=0.2)\n", + "\n", + "# Plot training and validation loss\n", + "plt.figure(figsize=(10,5))\n", + "plt.plot(history.history['loss'], label='Training Loss')\n", + "plt.plot(history.history['val_loss'], label='Validation Loss', linestyle='--')\n", + "plt.title(\"Learning Curve\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"Loss\")\n", + "plt.legend()\n", + "plt.show()\n", + "\n", + "# Save the weights\n", + "m.save_weights(\"UNetW.weights.h5\")\n", + "\n", + "# Example prediction\n", + "y_pred = m.predict(X, batch_size=batch_size)\n", + "print(\"y_pred shape:\", y_pred.shape)\n", + "\n", + "# Visualize a sample\n", + "idx = 0\n", + "fig, ax = plt.subplots(1, 2, figsize=(8,4))\n", + "ax[0].imshow(X[idx].reshape(64,64), cmap='gray')\n", + "ax[0].set_title('Input Image')\n", + "ax[1].imshow(y_pred[idx].reshape(32,32), cmap='gray')\n", + "ax[1].set_title('Predicted Mask')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AttentionUNET (Vishal)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Activation, BatchNormalization, Add, Multiply\n", + "from tensorflow.keras.models import Model\n", + "import os\n", + "import numpy as np\n", + "from tensorflow.keras.preprocessing.image import load_img, img_to_array\n", + "\n", + "def attention_block(x, g, inter_channel):\n", + " \"\"\"\n", + " Attention Block: Refines encoder features based on decoder signals.\n", + " x: Input tensor from the encoder (skip connection)\n", + " g: Gating signal from the decoder (upsampled tensor)\n", + " inter_channel: Number of intermediate channels (reduces computation)\n", + " \"\"\"\n", + " # 1x1 Convolution on input tensor\n", + " theta_x = Conv2D(inter_channel, kernel_size=(1, 1), strides=(1, 1), padding='same')(x)\n", + " # 1x1 Convolution on gating tensor\n", + " phi_g = Conv2D(inter_channel, kernel_size=(1, 1), strides=(1, 1), padding='same')(g)\n", + " \n", + " # Add the transformed inputs and apply ReLU\n", + " add_xg = Add()([theta_x, phi_g])\n", + " relu_xg = Activation('relu')(add_xg)\n", + " \n", + " # Another 1x1 Convolution to generate attention coefficients\n", + " psi = Conv2D(1, kernel_size=(1, 1), strides=(1, 1), padding='same')(relu_xg)\n", + " # Sigmoid activation to normalize attention weights\n", + " sigmoid_psi = Activation('sigmoid')(psi)\n", + " \n", + " # Multiply the input tensor with the attention weights\n", + " return Multiply()([x, sigmoid_psi])\n", + "\n", + "def conv_block(x, filters):\n", + " \"\"\"\n", + " Convolutional Block: Apply two 3x3 convolutions followed by BatchNorm and ReLU.\n", + " x: Input tensor\n", + " filters: Number of output filters for the convolutions\n", + " \"\"\"\n", + " x = Conv2D(filters, kernel_size=(3, 3), padding='same')(x)\n", + " x = BatchNormalization()(x)\n", + " x = Activation('relu')(x)\n", + " x = Conv2D(filters, kernel_size=(3, 3), padding='same')(x)\n", + " x = BatchNormalization()(x)\n", + " x = Activation('relu')(x)\n", + " return x\n", + "\n", + "def attention_unet(input_shape, num_classes):\n", + " \"\"\"\n", + " Attention U-Net model architecture.\n", + " input_shape: Shape of input images (H, W, C)\n", + " num_classes: Number of output segmentation classes\n", + " \"\"\"\n", + " # Input layer for the images\n", + " inputs = Input(input_shape)\n", + " \n", + " # Encoder (Downsampling path)\n", + " c1 = conv_block(inputs, 64) # First Conv Block\n", + " p1 = MaxPooling2D((2, 2))(c1) # Downsample by 2\n", + " \n", + " c2 = conv_block(p1, 128) # Second Conv Block\n", + " p2 = MaxPooling2D((2, 2))(c2) # Downsample by 2\n", + " \n", + " c3 = conv_block(p2, 256) # Third Conv Block\n", + " p3 = MaxPooling2D((2, 2))(c3) # Downsample by 2\n", + " \n", + " c4 = conv_block(p3, 512) # Fourth Conv Block\n", + " p4 = MaxPooling2D((2, 2))(c4) # Downsample by 2\n", + " \n", + " # Bottleneck (lowest level of the U-Net)\n", + " c5 = conv_block(p4, 1024)\n", + " \n", + " # Decoder (Upsampling path)\n", + " up6 = UpSampling2D((2, 2))(c5) # Upsample\n", + " att6 = attention_block(c4, up6, 512) # Attention Block\n", + " merge6 = concatenate([up6, att6], axis=-1) # Concatenate features\n", + " c6 = conv_block(merge6, 512) # Conv Block after concatenation\n", + " \n", + " up7 = UpSampling2D((2, 2))(c6)\n", + " att7 = attention_block(c3, up7, 256)\n", + " merge7 = concatenate([up7, att7], axis=-1)\n", + " c7 = conv_block(merge7, 256)\n", + " \n", + " up8 = UpSampling2D((2, 2))(c7)\n", + " att8 = attention_block(c2, up8, 128)\n", + " merge8 = concatenate([up8, att8], axis=-1)\n", + " c8 = conv_block(merge8, 128)\n", + " \n", + " up9 = UpSampling2D((2, 2))(c8)\n", + " att9 = attention_block(c1, up9, 64)\n", + " merge9 = concatenate([up9, att9], axis=-1)\n", + " c9 = conv_block(merge9, 64)\n", + " \n", + " # Output layer for segmentation\n", + " outputs = Conv2D(num_classes, (1, 1), activation='softmax' if num_classes > 1 else 'sigmoid')(c9)\n", + " \n", + " # Define the model\n", + " model = Model(inputs=inputs, outputs=outputs)\n", + " return model\n", + "\n", + "# Function to load and preprocess images and masks\n", + "def load_data(image_dir, mask_dir, image_size):\n", + " \"\"\"\n", + " Load and preprocess images and masks for training.\n", + " image_dir: Path to the directory containing input images\n", + " mask_dir: Path to the directory containing segmentation masks\n", + " image_size: Tuple specifying the size (height, width) to resize the images and masks\n", + " \"\"\"\n", + " images = []\n", + " masks = []\n", + " image_files = sorted(os.listdir(image_dir))\n", + " mask_files = sorted(os.listdir(mask_dir))\n", + " \n", + " for img_file, mask_file in zip(image_files, mask_files):\n", + " try:\n", + " # Load and preprocess images\n", + " img_path = os.path.join(image_dir, img_file)\n", + " mask_path = os.path.join(mask_dir, mask_file)\n", + " \n", + " img = load_img(img_path, target_size=image_size) # Resize image\n", + " mask = load_img(mask_path, target_size=image_size, color_mode='grayscale') # Resize mask\n", + " \n", + " # Convert to numpy arrays and normalize\n", + " img = img_to_array(img) / 255.0\n", + " mask = img_to_array(mask) / 255.0\n", + " mask = np.round(mask) # Ensure masks are binary\n", + " \n", + " images.append(img)\n", + " masks.append(mask)\n", + " except Exception as e:\n", + " print(f\"Error loading {img_file} or {mask_file}: {e}. Skipping...\")\n", + " \n", + " return np.array(images), np.array(masks)\n", + "\n", + "# Example usage\n", + "if __name__ == \"__main__\":\n", + " # Load data\n", + " image_dir = \"./images/\" # Replace with your image directory\n", + " mask_dir = \"./masks/\" # Replace with your mask directory\n", + " image_size = (128, 128) # Resize all images to 128x128\n", + " images, masks = load_data(image_dir, mask_dir, image_size)\n", + " \n", + " # Define the model\n", + " model = attention_unet(input_shape=(128, 128, 3), num_classes=1)\n", + " \n", + " # Compile the model\n", + " model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + " \n", + " # Train the model\n", + " model.fit(images, masks, batch_size=8, epochs=20, validation_split=0.1)" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}