Diff of /Test.py [000000] .. [b52eda]

Switch to unified view

a b/Test.py
1
from torch_geometric import __version__ as pyg_version
2
from torch import __version__ as torch_version
3
from torch import device, as_tensor, max
4
from torch.cuda import is_available, can_device_access_peer
5
from Network import CHD_GNN
6
from Utilities import CHD_Dataset
7
from pandas import read_csv
8
from Graph_Conversion import Convert_To_Image
9
from matplotlib import pyplot as plt
10
from torch.distributed import init_process_group
11
from os import environ
12
13
DIRECTORY = '/home/sojo/Documents/ImageCHD/ImageCHD_dataset/'
14
15
print(pyg_version)
16
print(torch_version)
17
print(is_available())
18
print(can_device_access_peer(device('cuda:1'), device('cuda:0')))
19
20
init_process_group('nccl')
21
local_rank = int(environ['LOCAL_RANK'])
22
global_rank = int(environ['RANK'])
23
batch_size = int(environ['WORLD_SIZE'])
24
25
if global_rank == 0:
26
    print('PyG version: ', pyg_version)
27
    print('Torch version: ', torch_version)
28
    print('GPU available: ', is_available())
29
    print(batch_size)
30
31
# gpu = device('cuda:0')
32
# print(gpu)
33
# gpu = device('cuda:1')
34
# print(gpu)
35
# testing = CHD_GNN().to(gpu)
36
# metadata = read_csv(filepath_or_buffer = DIRECTORY + 'train_dataset_info.csv')
37
# dataset = CHD_Dataset(metadata = metadata, directory = DIRECTORY)
38
# sample = dataset.get(76)
39
40
# print(sample.x.type())
41
# print(sample.edge_index.type())
42
# print(sample.y.type())
43
44
# print(sample.x[0][0].type())
45
# print(sample.edge_index[0][0].type())
46
# print(sample.y[0][0].type())
47
48
# out = testing(sample.x, sample.edge_index)
49
# print(out.shape)
50
# print(out.type())
51
# _, label = max(out, dim = 1)
52
# print(label)
53
# print(label.shape)
54
# print(label.type())
55
56
# result = Convert_To_Image(label, sample.adj_count)
57
# plt.imshow(result, cmap = 'gray')
58
# plt.show()