|
a |
|
b/Network.py |
|
|
1 |
from torch.nn import Module |
|
|
2 |
from torch_geometric.nn import GATv2Conv |
|
|
3 |
|
|
|
4 |
class CHD_GNN(Module): |
|
|
5 |
r""" |
|
|
6 |
PyTorch Geometric GNN used for coronary-CT segmentation \ |
|
|
7 |
of images with visible CHDs. |
|
|
8 |
""" |
|
|
9 |
def __init__(self, *args, **kwargs): |
|
|
10 |
super().__init__(*args, **kwargs) |
|
|
11 |
|
|
|
12 |
# GAT layers |
|
|
13 |
self.gat_1_to_1 = GATv2Conv(1, 1, |
|
|
14 |
fill_value = 'sum', |
|
|
15 |
dropout = 0.25) |
|
|
16 |
self.gat_1_to_2 = GATv2Conv(1, 2, |
|
|
17 |
fill_value = 'sum') |
|
|
18 |
self.gat_2_to_2_n1 = GATv2Conv(2, 2, |
|
|
19 |
fill_value = 'sum', |
|
|
20 |
dropout = 0.25) |
|
|
21 |
self.gat_2_to_2_n2 = GATv2Conv(2, 2, |
|
|
22 |
fill_value = 'sum', |
|
|
23 |
dropout = 0.25) |
|
|
24 |
self.gat_2_to_4 = GATv2Conv(2, 4, |
|
|
25 |
fill_value = 'sum') |
|
|
26 |
self.gat_4_to_4_n1 = GATv2Conv(4, 4, |
|
|
27 |
fill_value = 'sum', |
|
|
28 |
dropout = 0.25) |
|
|
29 |
self.gat_4_to_4_n2 = GATv2Conv(4, 4, |
|
|
30 |
fill_value = 'sum', |
|
|
31 |
dropout = 0.25) |
|
|
32 |
self.gat_4_to_8 = GATv2Conv(4, 8, |
|
|
33 |
fill_value = 'sum') |
|
|
34 |
self.gat_8_to_8 = GATv2Conv(8, 8, |
|
|
35 |
fill_value = 'sum') |
|
|
36 |
|
|
|
37 |
def forward(self, x, adj_matrix): |
|
|
38 |
r""" |
|
|
39 |
Arguments: |
|
|
40 |
x (Tensor): Source coronary-CT image as a graph. |
|
|
41 |
adj_matrix (Tensor): Adjacency matrix of the x graph. |
|
|
42 |
|
|
|
43 |
Returns: |
|
|
44 |
out (Tensor): Segmentation result as a graph. |
|
|
45 |
""" |
|
|
46 |
out = self.gat_1_to_1(x = x, edge_index = adj_matrix) |
|
|
47 |
out = self.gat_1_to_2(x = out, edge_index = adj_matrix) |
|
|
48 |
out = out.tanh() |
|
|
49 |
|
|
|
50 |
out = self.gat_2_to_2_n1(x = out, edge_index = adj_matrix) |
|
|
51 |
out = self.gat_2_to_2_n2(x = out, edge_index = adj_matrix) |
|
|
52 |
out = self.gat_2_to_4(x = out, edge_index = adj_matrix) |
|
|
53 |
out = out.tanh() |
|
|
54 |
|
|
|
55 |
out = self.gat_4_to_4_n1(x = out, edge_index = adj_matrix) |
|
|
56 |
out = self.gat_4_to_4_n2(x = out, edge_index = adj_matrix) |
|
|
57 |
out = self.gat_4_to_8(x = out, edge_index = adj_matrix) |
|
|
58 |
out = out.tanh() |
|
|
59 |
|
|
|
60 |
out = self.gat_8_to_8(x = out, edge_index = adj_matrix) |
|
|
61 |
return out |