Diff of /Extracting_Planes.py [000000] .. [b52eda]

Switch to unified view

a b/Extracting_Planes.py
1
from nibabel import load
2
from numpy import ndarray, array, int32, uint8
3
from time import time
4
5
def Convert_To_Graph(image: ndarray, label: ndarray) -> tuple[ndarray, ndarray]:
6
    r"""
7
        Arguments:
8
            image (numpy.ndarray): Source coronary-CT image.
9
            label (numpy.ndarray): Ground truth segmentation.
10
        
11
        Returns:
12
            out (tuple[numpy.ndarray, numpy.ndarray]): Source coronary-CT image and ground truth segmentation as graphs.
13
    """
14
    # start = time()
15
    img = array(image, dtype = int32)
16
    lab = array(label, dtype = uint8)
17
    img[1::2, :] = image[1::2, ::-1]
18
    lab[1::2, :] = label[1::2, ::-1]
19
    
20
    img = img.flatten()
21
    img = img.reshape((img.shape[0], 1))
22
23
    lab[lab > 7] = 0
24
    lab = lab.flatten()
25
    # print('Convert_To_Graph time: ', time() - start)
26
    return (img, lab)
27
28
def Extract_And_Convert(path_to_image: str, path_to_label: str,
29
                        plane_type: str, plane_index: int) \
30
                        -> tuple[ndarray, ndarray]:
31
    r"""
32
        Arguments:
33
            path_to_image (str): Full path to the coronary-CT .nii.gz file.
34
            path_to_label (str): Full path to the segmentation label .nii.gz file.
35
            plane_type (str): One-character string with a value of 'A', 'C', or 'S'.
36
            plane_index (int): Index of plane to be extracted from the image and label.
37
        
38
        Returns:
39
            out (tuple[numpy.ndarray, numpy.ndarray]): Source coronary-CT image and ground truth segmentation as graphs.
40
    """
41
    # start = time()
42
    match plane_type:
43
        case 'A': # Axial plane
44
            image = load(path_to_image).dataobj[:, :, plane_index]
45
            label = load(path_to_label).dataobj[:, :, plane_index]
46
        case 'C': # Coronal plane
47
            image = load(path_to_image).dataobj[:, plane_index, :]
48
            label = load(path_to_label).dataobj[:, plane_index, :]
49
        case 'S': # Sagittal plane
50
            image = load(path_to_image).dataobj[plane_index, :, :]
51
            label = load(path_to_label).dataobj[plane_index, :, :]
52
    # print('Nibabel loading time: ', time() - start)
53
    return Convert_To_Graph(image, label)