68 lines (67 with data), 1.6 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "97c42d59-343d-4e6a-97ef-6c65d5741cbb",
"metadata": {},
"outputs": [],
"source": [
"# BME-1301 Lab-2: Segmentation using U-Net"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ca2c07d8-7fcb-4a76-a700-1aedd0318a41",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from PIL import Image\n",
"all_label_path = 'C:/Users/DELL/Desktop/homework/bme1301 transfer/ACDC-2D-All/ACDC-2D-one/val/GT/'\n",
"all_label_list = os.listdir(all_label_path)\n",
"all_label_path = [os.path.join(all_label_path,all_label_list[i]) for i in range(len(all_label_list))]\n",
"#print(all_label_path)\n",
"\n",
"\n",
"for path in all_label_path:\n",
" img = Image.open(path)\n",
" im=np.array(img)\n",
" im[im<255]=0\n",
" img = Image.fromarray(im)\n",
" img.save(path)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "81eed033-a9af-47de-b7ca-e6bac10071c4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}