[2147a4]: / bme1312 / .ipynb_checkpoints / solver-checkpoint.py

Download this file

302 lines (246 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""
BME1301
DO NOT MODIFY anything in this file.
"""
import os
import itertools
import statistics
from typing import Callable
import numpy as np
# from tqdm import tqdm
from matplotlib import pyplot as plt
from tqdm.autonotebook import tqdm # may raise warning about Jupyter
from tqdm.auto import tqdm # who needs warnings
import torch, torchvision
from torch import nn
from torch.utils import data as Data
from .utils import imgshow, imsshow, image_mask_overlay
from .evaluation import get_accuracy, get_sensitivity, get_specificity, get_precision, get_F1, get_JS, get_DC
class Solver(object):
def __init__(self,
model: nn.Module,
optimizer: torch.optim.Optimizer,
criterion: Callable,
lr_scheduler = None,
recorder: dict = None,
device=None):
device = device if device is not None else \
('cuda:0' if torch.cuda.is_available() else 'cpu')
self.device = device
self.recorder = recorder
self.model = self.to_device(model)
self.optimizer = optimizer
self.criterion = criterion
self.lr_scheduler = lr_scheduler
def _step(self,
batch: tuple) -> dict:
raise NotImplementedError()
def to_device(self, x):
if isinstance(x, torch.Tensor):
return x.to(self.device)
elif isinstance(x, np.ndarray):
return torch.tensor(x, device=self.device)
elif isinstance(x, nn.Module):
return x.to(self.device)
else:
raise RuntimeError("Data cannot transfer to correct device.")
def to_numpy(self, x):
if isinstance(x, np.ndarray):
return x
elif isinstance(x, torch.Tensor):
return x.detach().cpu().numpy()
else:
raise RuntimeError(f"Cannot convert type {type(x)} into numpy array.")
def train(self,
epochs: int,
data_loader,
*,
val_loader=None,
is_plot=True) -> dict:
torch.cuda.empty_cache()
val_loss_epochs = []
train_loss_epochs = []
pbar_train = tqdm(total=len(data_loader.sampler), unit='img')
if val_loader is not None:
pbar_val = tqdm(total=len(val_loader.sampler), desc=f'[Validation] waiting', unit='img')
for epoch in range(epochs):
pbar_train.reset()
pbar_train.set_description(desc=f'[Train] Epoch {epoch + 1}/{epochs}')
epoch_loss_acc = 0
epoch_size = 0
for batch in data_loader:
self.model.train()
# forward
step_dict = self._step(batch)
batch_size = step_dict['batch_size']
loss = step_dict['loss']
# backward
self.optimizer.zero_grad()
loss.backward()
# optimize
self.optimizer.step()
# update information
loss_value = loss.item()
epoch_loss_acc += loss_value
epoch_size += batch_size
pbar_train.update(batch_size)
pbar_train.set_postfix(loss=loss_value / batch_size)
epoch_avg_loss = epoch_loss_acc / epoch_size
pbar_train.set_postfix(epoch_avg_loss=epoch_avg_loss)
train_loss_epochs.append(epoch_avg_loss)
if self.lr_scheduler:
self.lr_scheduler.step()
# validate if `val_loader` is specified
if val_loader is not None:
pbar_val.reset()
pbar_val.set_description(desc=f'[Validation] Epoch {epoch + 1}/{epochs}')
val_avg_loss = self.validate(val_loader, pbar=pbar_val, is_compute_metrics=False)
val_loss_epochs.append(val_avg_loss)
pbar_train.close()
if val_loader is not None:
pbar_val.close()
train_loss_epochs = torch.tensor(train_loss_epochs).numpy()
val_loss_epochs = torch.tensor(val_loss_epochs).numpy()
plt.figure()
plt.plot(list(range(1, epochs + 1)), train_loss_epochs, label='train')
if val_loader is not None:
plt.plot(list(range(1, epochs + 1)), val_loss_epochs, label='validation')
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
plt.close('all')
def validate(self, data_loader, *, pbar=None, is_compute_metrics=True) -> float:
"""
:param pbar: when pbar is specified, do not print average loss
:return:
"""
torch.cuda.empty_cache()
metrics_acc = {}
loss_acc = 0
size_acc = 0
is_need_log = (pbar is None)
with torch.no_grad():
if pbar is None:
pbar = tqdm(total=len(data_loader.sampler), desc=f'[Validation]', unit='img')
for batch in data_loader:
self.model.eval()
# forward
step_dict = self._step(batch, is_compute_metrics=is_compute_metrics)
batch_size = step_dict['batch_size']
loss = step_dict['loss']
loss_value = loss.item()
# aggregate metrics
metrics_acc = self._aggregate_metrics(metrics_acc, step_dict)
# update information
loss_acc += loss_value
size_acc += batch_size
pbar.update(batch_size)
pbar.set_postfix(loss=loss_value)
val_avg_loss = loss_acc / size_acc
pbar.set_postfix(val_avg_loss=val_avg_loss)
if is_need_log:
pbar.close() # destroy newly created pbar
print('=' * 30 + ' Measurements ' + '=' * 30)
for k, v in metrics_acc.items():
print(f"[{k}] {v / size_acc}")
else:
return val_avg_loss
def _aggregate_metrics(self, metrics_acc: dict, step_dict: dict):
batch_size = step_dict['batch_size']
for k, v in step_dict.items():
if k[:7] == 'metric_':
value = v * batch_size
metric_name = k[7:]
if metric_name not in metrics_acc:
metrics_acc[metric_name] = value
else:
metrics_acc[metric_name] += value
return metrics_acc
def visualize(self, data_loader, idx, net):
raise NotImplementedError()
def get_recorder(self) -> dict:
return self.recorder
class Lab2Solver(Solver):
def _step(self, batch, is_compute_metrics=True) -> dict:
image, seg_gt = batch
image = self.to_device(image) # [B, C=1, H, W]
seg_gt = self.to_device(seg_gt) # [B, C=1, H, W]
B, C, H, W = image.shape
pred_seg = self.model(image) # [B, C=1, H, W]
loss = self.criterion(pred_seg, seg_gt)
step_dict = {
'loss': loss,
'batch_size': B
}
# ============ compute metrics TODO
if not self.model.training and is_compute_metrics:
pred_seg_probs = torch.sigmoid(pred_seg)
SE = get_sensitivity(pred_seg_probs, seg_gt)
SP = get_specificity(pred_seg_probs, seg_gt)
PC = get_precision(pred_seg_probs, seg_gt)
F1 = get_F1(pred_seg_probs, seg_gt)
JS = get_JS(pred_seg_probs, seg_gt)
DC = get_DC(pred_seg_probs, seg_gt)
step_dict['metric_avg_Sensitivity'] = SE
step_dict['metric_avg_Specifity'] = SP
step_dict['metric_avg_Precision'] = PC
step_dict['metric_avg_F1Score'] = F1
step_dict['metric_avg_JaccardSimilarity'] = JS
step_dict['metric_avg_DiceCoefficient'] = DC
return step_dict
def visualize(self, data_loader, idx, *, dpi=100):
with torch.no_grad():
# fetch data batch
if idx < 0 or idx > len(data_loader) * data_loader.batch_size:
raise RuntimeError("idx is out of range.")
batch_idx = idx // data_loader.batch_size
batch_offset = idx - batch_idx * data_loader.batch_size
batch = next(itertools.islice(data_loader, batch_idx, None))
# inference
image, seg_gt = batch
image = self.to_device(image) # [B, C=1, H, W]
seg_gt = self.to_device(seg_gt) # [B, C=1, H, W]
B, C, H, W = image.shape
self.model.eval()
pred_seg = self.model(image) # [B, C=1, H, W]
pred_seg_probs = torch.sigmoid(pred_seg)
pred_seg_mask = pred_seg_probs > 0.5 # default threshoulding: 0.5
DC = get_DC(pred_seg_probs[batch_offset, ...][None, ...], seg_gt[batch_offset, ...][None, ...])
image = self.to_numpy(image[batch_offset, 0, :, :])
seg_gt = self.to_numpy(seg_gt[batch_offset, 0, :, :])
pred_seg_mask = self.to_numpy(pred_seg_mask[batch_offset, 0, :, :])
seg_gt = (seg_gt > 0.5) * 1.0
seg_gt_overlay = image_mask_overlay(image, seg_gt)
pred_overlay = image_mask_overlay(image, pred_seg_mask)
imsshow([image, seg_gt, pred_seg_mask],
titles=['Image',
f"Segmentation GT",
f"Prediction (DICE {DC:.2f})"],
num_col=3,
dpi=dpi,
is_colorbar=True)
imsshow([seg_gt_overlay, pred_overlay],
titles=[f"Segmentation GT",
f"Prediction (DICE {DC:.2f})"],
num_col=2,
dpi=dpi,
is_colorbar=False)
def inference_all(self, data_loader, output_path) -> None:
torch.cuda.empty_cache()
with torch.no_grad():
self.model.eval()
for batch in tqdm(data_loader):
image, filename = batch
B, C, H, W =image.shape
image = self.to_device(image) # [B, C=1, H, W]
pred_seg = self.model(image) # [B, C=1, H, W]
pred_seg_probs = torch.sigmoid(pred_seg)
pred_seg_mask = pred_seg_probs > 0.5 # default threshoulding: 0.5
pred_seg_mask = pred_seg_mask * 1.0
pred_seg_mask = pred_seg_mask.cpu() # [B, C=1, H, W]
for i in range(B):
torchvision.utils.save_image(
pred_seg_mask[i, 0, :, :],
os.path.join(output_path, f'case_{filename[i]}_segmentation.jpg')
)