import os
import random
from random import shuffle
import numpy as np
import torch
from torch.utils import data
from torchvision import transforms as T
from torchvision.transforms import functional as F
from PIL import Image
class ImageFolder(data.Dataset):
def __init__(self, root, mode='train', augmentation_prob=0.4):
assert mode in {'train', 'valid'}
"""Initializes image paths and preprocessing module."""
self.root = root
# GT : Ground Truth
self.GT_paths = root + '_GT/'
self.image_paths = list(map(lambda x: os.path.join(root, x), os.listdir(root)))
self.mode = mode
self.RotationDegree = [0, 90, 180, 270]
self.augmentation_prob = augmentation_prob
print("image count in {} path :{}".format(self.mode, len(self.image_paths)))
def __getitem__(self, index):
"""Reads an image from a file and preprocesses it and returns."""
image_path = self.image_paths[index]
filename = image_path.split('_')[-1][:-len(".jpg")]
GT_path = self.GT_paths + 'case_' + filename + '_segmentation.jpg'
image = Image.open(image_path)
seg_gt = Image.open(GT_path)
aspect_ratio = image.size[1] / image.size[0]
Transform = []
ResizeRange = random.randint(300, 320)
Transform.append(T.Resize((int(ResizeRange * aspect_ratio), ResizeRange)))
p_transform = random.random()
if (self.mode == 'train') and p_transform <= self.augmentation_prob:
RotationDegree = random.randint(0, 3)
RotationDegree = self.RotationDegree[RotationDegree]
if (RotationDegree == 90) or (RotationDegree == 270):
aspect_ratio = 1 / aspect_ratio
Transform.append(T.RandomRotation((RotationDegree, RotationDegree)))
RotationRange = random.randint(-10, 10)
Transform.append(T.RandomRotation((RotationRange, RotationRange)))
CropRange = random.randint(250, 270)
Transform.append(T.CenterCrop((int(CropRange * aspect_ratio), CropRange)))
Transform = T.Compose(Transform)
image = Transform(image)
seg_gt = Transform(seg_gt)
ShiftRange_left = random.randint(0, 20)
ShiftRange_upper = random.randint(0, 20)
ShiftRange_right = image.size[0] - random.randint(0, 20)
ShiftRange_lower = image.size[1] - random.randint(0, 20)
image = image.crop(box=(ShiftRange_left, ShiftRange_upper, ShiftRange_right, ShiftRange_lower))
seg_gt = seg_gt.crop(box=(ShiftRange_left, ShiftRange_upper, ShiftRange_right, ShiftRange_lower))
if random.random() < 0.5:
image = F.hflip(image)
seg_gt = F.hflip(seg_gt)
if random.random() < 0.5:
image = F.vflip(image)
seg_gt = F.vflip(seg_gt)
Transform = T.ColorJitter(brightness=0.2, contrast=0.2, hue=0.02)
image = Transform(image)
Transform = []
Transform.append(T.Resize((int(256 * aspect_ratio) - int(256 * aspect_ratio) % 16, 256)))
Transform.append(T.ToTensor())
Transform = T.Compose(Transform)
image = Transform(image)
seg_gt = Transform(seg_gt)
Norm_ = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
image = Norm_(image)
Grayscale_ = T.Grayscale(num_output_channels=1)
image = Grayscale_(image)
return image, seg_gt
def __len__(self):
"""Returns the total number of font files."""
return len(self.image_paths)
class Test_ImageFolder(data.Dataset):
def __init__(self, root, mode='train', augmentation_prob=0.4):
"""Initializes image paths and preprocessing module."""
assert mode in {'test'}
self.root = root
# GT : Ground Truth
self.image_paths = list(map(lambda x: os.path.join(root, x), os.listdir(root)))
self.mode = mode
self.RotationDegree = [0, 90, 180, 270]
self.augmentation_prob = augmentation_prob
print("image count in {} path :{}".format(self.mode, len(self.image_paths)))
def __getitem__(self, index):
"""Reads an image from a file and preprocesses it and returns."""
image_path = self.image_paths[index]
filename = image_path.split('_')[-1][:-len(".jpg")]
image = Image.open(image_path)
aspect_ratio = image.size[1] / image.size[0]
Transform = []
ResizeRange = random.randint(300, 320)
Transform.append(T.Resize((int(ResizeRange * aspect_ratio), ResizeRange)))
Transform.append(T.Resize((int(256 * aspect_ratio) - int(256 * aspect_ratio) % 16, 256)))
Transform.append(T.ToTensor())
Transform = T.Compose(Transform)
image = Transform(image)
Norm_ = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
image = Norm_(image)
Grayscale_ = T.Grayscale(num_output_channels=1)
image = Grayscale_(image)
return image,filename
def __len__(self):
"""Returns the total number of font files."""
return len(self.image_paths)
def get_loader(image_root_path, batch_size, num_workers=4, mode='train', augmentation_prob=0.4):
"""Builds and returns Dataloader."""
if mode=='test':
dataset = Test_ImageFolder(root=image_root_path, mode=mode, augmentation_prob=augmentation_prob)
else:
dataset = ImageFolder(root=image_root_path, mode=mode, augmentation_prob=augmentation_prob)
data_loader = data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True if mode == 'train' else False,
num_workers=num_workers)
return data_loader