[8fb459]: / cmac / aux_strain.py

Download this file

187 lines (142 with data), 6.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from scipy.ndimage.measurements import center_of_mass
from skimage.measure import find_contours
import numpy as np
def label_to_tags(label_3d, label_id=2):
Ck = []
for z in range(label_3d.shape[-1]):
try:
ck = tag_contour((label_3d[:,:,z].T==label_id)*1. )
ck = np.concatenate((ck,np.zeros((24,3,1))+z),-1)
Ck += [ck]
except:
continue
return np.stack(Ck)
def label_to_tags2(contours_dict, K=24, R=5, centroid=None):
Ck = []
for z in contours_dict.keys():
ck = tag_contour2(contours_dict[z], K=K, R=R, centroid=centroid)
ck = np.concatenate((ck,np.zeros((K,R,1))+z),-1)
Ck += [ck]
return np.stack(Ck)
def tag_contour(myocardial_mask_2d, K=24, R=3):
"""Generate polar grid using myocardial mass mask.
"""
Cx, Cy = center_of_mass(myocardial_mask_2d)
contours_endo, contours_epi = find_contours(myocardial_mask_2d,0.8)
# cartesian coordinates (centered) of endo/epi contours
x_endo, y_endo = contours_endo[:,0], contours_endo[:,1]
x_epi, y_epi = contours_epi[:,0], contours_epi[:,1]
# polar coordinates of endo/epi contours
phi_endo = np.rad2deg(np.arctan2(y_endo-Cy, x_endo-Cx))+180
phi_epi = np.rad2deg(np.arctan2(y_epi-Cy, x_epi-Cx))+180
rho_endo = ((x_endo-Cx)**2 + (y_endo-Cy)**2)**0.5
rho_epi = ((x_epi-Cx)**2 + (y_epi-Cy)**2)**0.5
IDX = [np.array_split(np.argsort(phi_endo),K)[k][0] for k in range(K)]
ck = []
for i in IDX:
d = (x_endo[i]-x_epi)**2+(y_endo[i]-y_epi)**2
dmin_i = np.argmin(d)
rhos = np.linspace(rho_endo[i],rho_epi[dmin_i],R)
xk = [rhos[k] * np.cos(np.deg2rad(phi_endo[i]-180)) for k in range(R)] + Cx
yk = [rhos[k] * np.sin(np.deg2rad(phi_endo[i]-180)) for k in range(R)] + Cy
ck += [np.stack((yk,xk),-1)]
ck = np.stack(ck,0)
return ck
def tag_contour2(contours, phi_regionIDs, K=24, R=3, centroid=None):
"""Generate polar grid using endocardial and epicardial contours.
"""
get_cx_cy = lambda contour : (contour.max(axis=0) + contour.min(axis=0)) / 2
contours_endo, contours_epi = contours['endocardium'], contours['epicardium']
if centroid is None:
Cx, Cy = get_cx_cy(contours_endo)
else:
Cx, Cy = centroid
# cartesian coordinates (centered) of endo/epi contours
x_endo, y_endo = contours_endo[:,0], contours_endo[:,1]
x_epi, y_epi = contours_epi[:,0], contours_epi[:,1]
# polar coordinates of endo/epi contours
phi_endo = np.rad2deg(np.arctan2(y_endo-Cy, x_endo-Cx))+180
phi_epi = np.rad2deg(np.arctan2(y_epi-Cy, x_epi-Cx))+180
rho_endo = ((x_endo-Cx)**2 + (y_endo-Cy)**2)**0.5
rho_epi = ((x_epi-Cx)**2 + (y_epi-Cy)**2)**0.5
IDX = [np.array_split(np.argsort(phi_endo),K)[k][0] for k in range(K)]
ck = []
ck_regionIDs = []
for i in IDX:
d = (x_endo[i]-x_epi)**2+(y_endo[i]-y_epi)**2
dmin_i = np.argmin(d)
rhos = np.linspace(rho_endo[i],rho_epi[dmin_i],R)
xk = [rhos[k] * np.cos(np.deg2rad(phi_endo[i]-180)) for k in range(R)] + Cx
yk = [rhos[k] * np.sin(np.deg2rad(phi_endo[i]-180)) for k in range(R)] + Cy
ck += [np.stack((xk,yk),-1)]
ck_regionIDs += [[phi_regionIDs[i]]*R]
ck = np.stack(ck,0)
ck_regionIDs = np.stack(ck_regionIDs,0)
return ck, ck_regionIDs
def calculate_circumferential_strain(coords_batch, wall_index, use_linear_strain=False):
# batch x time x 2 x 24
midwall_points = coords_batch[:,:,:, wall_index::7] # get point index 3 for every radial
# print(midwall_points.shape)
# we will have to calculate the strain between every points
points_arr = np.split(midwall_points, 24, axis=3)
# strain formula: ((l^2/L^2)-1) / 2 --> l^2 = x^2 + y^2
# with x and y is the difference between x and y coords of 2 points
ccs = []
# the cc strain is circular, so we going through all of them and back to point 0
for r in range(0,len(points_arr)):
# for the last point, calculate between point_r and point_0
if r+1 == len(points_arr):
cc_diff = np.square(points_arr[r] - points_arr[0])
else:
cc_diff = np.square(points_arr[r] - points_arr[r+1])
# do the sum: x^2 + y^2
cc_sum = cc_diff[:,:,0] + cc_diff[:,:,1]
if use_linear_strain:
# use L instead of L^2
cc_sum = np.sqrt(cc_sum)
cc_sum_ed = cc_sum[:,0]
# do the strain calculation
partial_cc = cc_sum/cc_sum_ed[:, np.newaxis]
if use_linear_strain:
partial_cc = (partial_cc - 1)
else:
partial_cc = (partial_cc - 1) / 2
# put the partial_cc in every time frame back together
ccs.append(partial_cc)
# stack the partial_cc for every links together
stacked_ccs = np.stack(ccs, axis=2)
# calculate the mean cc for every time frame
mid_cc = np.mean(stacked_ccs, axis=2)
# print(mid_cc.shape)
# print(mid_cc[0][0:5])
return mid_cc
def calculate_radial_strain(coords_batch, use_linear_strain=False):
"""
Calculate rr strain for a batch of image sequences
flattened_coords => [batch_size, nr_frames, 2, 168]
"""
# point 0 is epi, point 6 is endo, do this for all the 'radials'
endo_batch = coords_batch[:, :, :, ::7]
epi_batch = coords_batch[:, :, :, 6::7]
# batch x time x 2 x 24 radials
diff = (epi_batch - endo_batch) ** 2
# print('diff', diff.shape)
# batch x time x 24 sqrdiff
summ = diff[:,:,0,:] + diff[:,:,1,:] # x^2 + y^2
# print('summ', summ.shape)
if use_linear_strain:
# use L instead of L^2
summ = np.sqrt(summ)
# grab the frame 0 (ED) for all data, and 24 RR strains
summ_ed = summ[:,0,:]
# division through a certain column, without np.split
# batch x time x 24 rr strains
divv = summ/summ_ed[:,np.newaxis] # this is the trick, add new axis
if use_linear_strain:
rr_strains = divv - 1
else:
rr_strains = (divv - 1) / 2
rr_strains = np.mean(rr_strains, axis=2)
# batch x time x strain
rr_strains = np.expand_dims(rr_strains, axis=2)
return rr_strains