[8fb459]: / cmac / aux_dicom.py

Download this file

90 lines (65 with data), 3.9 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import glob
import pydicom
import numpy as np
import nibabel as nib
from dipy.align.reslice import reslice
from dipy.align.imaffine import AffineMap
def extract_cosines(ImageOrientationPatient):
row_cosine = np.array(ImageOrientationPatient[:3])
column_cosine = np.array(ImageOrientationPatient[3:])
slice_cosine = np.cross(row_cosine, column_cosine)
return row_cosine, column_cosine, slice_cosine
def read_RefDs(dicom_folder_path):
cine_dicom_files = glob.glob(dicom_folder_path)
SliceLocations = [pydicom.read_file(cine_dicom_file).SliceLocation
for cine_dicom_file in cine_dicom_files]
SliceOriginID = np.array(SliceLocations, dtype=float).argmin()
RefDs = pydicom.read_file(cine_dicom_files[SliceOriginID])
ImageOrientationPatient = RefDs.ImageOrientationPatient
ImagePositionPatient = np.array(list(RefDs.ImagePositionPatient), dtype=float)
Zooms = np.array(list(RefDs.PixelSpacing) + [RefDs.SliceThickness], dtype=float)
return ImageOrientationPatient, ImagePositionPatient, Zooms
def read_affine_info(dicom_folder_path, viewer='slicer'):
ImageOrientationPatient, ImagePositionPatient, Zooms = read_RefDs(dicom_folder_path)
affine_axial = np.diag(list(Zooms)+[1])
affine_axial[:3,3] += ImagePositionPatient
row_cos, column_cos, slice_cos = extract_cosines(ImageOrientationPatient)
ijk2ras = np.stack((row_cos, column_cos, slice_cos))
if viewer == "slicer":
ijk2ras = (ijk2ras*np.array([-1,-1,1])).T
ImagePositionPatient = ImagePositionPatient*np.array([-1,-1,1])
affine = np.stack((ijk2ras[:,0]*Zooms[0],
ijk2ras[:,1]*Zooms[1],
ijk2ras[:,2]*Zooms[2],
ImagePositionPatient), axis=1)
return ijk2ras, np.vstack((affine,[[0,0,0,1]])), affine_axial
def reslice_3d(domain_nifti, codomain_nifti, mode='linear'):
affine_map = AffineMap(affine=np.eye(4),
domain_grid_shape=domain_nifti.shape, domain_grid2world=domain_nifti.affine,
codomain_grid_shape=codomain_nifti.shape, codomain_grid2world=codomain_nifti.affine)
return nib.Nifti1Image(affine_map.transform(codomain_nifti.get_fdata(),mode),domain_nifti.affine)
def reslice_4d(domain_nifti, codomain_nifti, mode='linear'):
reslice_arr = np.zeros(domain_nifti.shape[:3]+(codomain_nifti.shape[-1],))
affine_map = AffineMap(affine=np.eye(4),
domain_grid_shape=domain_nifti.shape[:3], domain_grid2world=domain_nifti.affine,
codomain_grid_shape=codomain_nifti.shape[:3], codomain_grid2world=codomain_nifti.affine)
for frame_id in range(reslice_arr.shape[-1]):
reslice_arr[:,:,:,frame_id] += affine_map.transform(codomain_nifti.get_fdata()[:,:,:,frame_id],mode)
return nib.Nifti1Image(reslice_arr, domain_nifti.affine)
def resample_nifti(subject_nifti, resolution=(1.5, 1.5), Nz=16, order=1, mode='nearest'):
"""Resample a 3D or 4D (3D+time) cine-MRI nifti to a new in-plane `resolution` with `Nz` slices."""
data = subject_nifti.get_fdata()
affine = subject_nifti.affine
zooms = subject_nifti.header.get_zooms()[:3]
new_zooms = (resolution[0], resolution[1], (zooms[2] * data.shape[2]) / Nz)
data_resampled, affine_resampled = reslice(data, affine, zooms, new_zooms, order=order, mode=mode)
subject_nifti_resampled = nib.Nifti1Image(data_resampled, affine_resampled)
x=subject_nifti_resampled.header.get_zooms()[:3]
y=new_zooms
if not np.allclose(x,y, rtol=1e-02):
print(subject_nifti.affine,affine)
print(zooms)
print(x,y)
warnings.warn('Output resolutions are different than expected!')
return subject_nifti_resampled