|
a |
|
b/utils/myocardial_strain.py |
|
|
1 |
import numpy as np |
|
|
2 |
from scipy.ndimage import rotate |
|
|
3 |
from scipy.ndimage import gaussian_filter |
|
|
4 |
from scipy.interpolate import interp1d, interp2d |
|
|
5 |
from scipy.ndimage.measurements import center_of_mass |
|
|
6 |
|
|
|
7 |
class Tensor(): |
|
|
8 |
|
|
|
9 |
def __init__(self, Exx, Exy, Exz, Eyx, Eyy, Eyz, Ezx, Ezy, Ezz): |
|
|
10 |
|
|
|
11 |
self.E1, self.E2, self.E3 = Exx.copy(), Exy.copy(), Exz.copy() |
|
|
12 |
self.E4, self.E5, self.E6 = Eyx.copy(), Eyy.copy(), Eyz.copy() |
|
|
13 |
self.E7, self.E8, self.E9 = Ezx.copy(), Ezy.copy(), Ezz.copy() |
|
|
14 |
|
|
|
15 |
def asmat(self): |
|
|
16 |
return np.array([[self.E1,self.E2,self.E3], |
|
|
17 |
[self.E4,self.E5,self.E6], |
|
|
18 |
[self.E7,self.E8,self.E9]]).transpose((2,3,4,0,1)) |
|
|
19 |
|
|
|
20 |
def asvoigt(self): |
|
|
21 |
return self.E1, self.E2, self.E3, self.E4, self.E5, self.E6, self.E7, self.E8, self.E9 |
|
|
22 |
|
|
|
23 |
def transpose(self): |
|
|
24 |
return Tensor(self.E1, self.E4, self.E7, self.E2, self.E5, self.E8, self.E3, self.E6, self.E9) |
|
|
25 |
|
|
|
26 |
def identity_add(self): |
|
|
27 |
self.E1 += 1; self.E5 += 1; self.E9 += 1 |
|
|
28 |
|
|
|
29 |
def identity_subtract(self): |
|
|
30 |
self.E1 -= 1; self.E5 -= 1; self.E9 -= 1 |
|
|
31 |
|
|
|
32 |
@staticmethod |
|
|
33 |
def dot(X, Y): |
|
|
34 |
|
|
|
35 |
X1,X2,X3,X4,X5,X6,X7,X8,X9=X.asvoigt() |
|
|
36 |
Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9=Y.asvoigt() |
|
|
37 |
|
|
|
38 |
Z1, Z2, Z3 = X1*Y1 + X2*Y4 + X3*Y7, X1*Y2 + X2*Y5 + X3*Y8, X1*Y3 + X2*Y6 + X3*Y9 |
|
|
39 |
Z4, Z5, Z6 = X4*Y1 + X5*Y4 + X6*Y7, X4*Y2 + X5*Y5 + X6*Y8, X4*Y3 + X5*Y6 + X6*Y9 |
|
|
40 |
Z7, Z8, Z9 = X7*Y1 + X8*Y4 + X9*Y7, X7*Y2 + X8*Y5 + X9*Y8, X7*Y3 + X8*Y6 + X9*Y9 |
|
|
41 |
|
|
|
42 |
return Tensor(Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9) |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
class MyocardialStrain(): |
|
|
46 |
|
|
|
47 |
def __init__(self, mask, flow): |
|
|
48 |
|
|
|
49 |
self.mask = mask |
|
|
50 |
self.flow = flow |
|
|
51 |
|
|
|
52 |
assert len(mask.shape) == 3 |
|
|
53 |
assert len(flow.shape) == 4 |
|
|
54 |
assert mask.shape == flow.shape[:3] |
|
|
55 |
assert flow.shape[-1] == 3 |
|
|
56 |
|
|
|
57 |
def calculate_strain(self, lv_label=3): |
|
|
58 |
|
|
|
59 |
cx, cy, cz = center_of_mass(self.mask==lv_label) |
|
|
60 |
nx, ny, nz = self.mask.shape |
|
|
61 |
|
|
|
62 |
self.flow_rot = roll_to_center(self.flow, cx, cy) |
|
|
63 |
self.mask_rot = roll_to_center(self.mask, cx, cy) |
|
|
64 |
|
|
|
65 |
ux, uy, uz = np.array_split(self.flow_rot, 3, -1) |
|
|
66 |
Uxx,Uxy,Uxz = np.gradient(np.squeeze(ux)) |
|
|
67 |
Uyx,Uyy,Uyz = np.gradient(np.squeeze(uy)) |
|
|
68 |
Uzx,Uzy,Uzz = np.gradient(np.squeeze(uz)) |
|
|
69 |
|
|
|
70 |
F = Tensor(Uxx,Uxy,Uxz,Uyx,Uyy,Uyz,Uzx,Uzy,Uzz) |
|
|
71 |
|
|
|
72 |
F.identity_add() |
|
|
73 |
F = F.dot(F.transpose(), F) |
|
|
74 |
F.identity_subtract() |
|
|
75 |
|
|
|
76 |
self.Err, self.Ecc, self.Erc, self.Ecr = convert_to_polar(mask=self.mask_rot, E=0.5*F.asmat()[:,:,:,:2,:2]) |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
def roll(x, rx, ry): |
|
|
80 |
x = np.roll(x, rx, axis=0) |
|
|
81 |
return np.roll(x, ry, axis=1) |
|
|
82 |
|
|
|
83 |
def roll_to_center(x, cx, cy): |
|
|
84 |
nx, ny = x.shape[:2] |
|
|
85 |
return roll(x, int(nx//2-cx), int(ny//2-cy)) |
|
|
86 |
|
|
|
87 |
def polar_grid(nx=128, ny=128): |
|
|
88 |
x, y = np.meshgrid(np.linspace(-nx//2, nx//2, nx), np.linspace(-ny//2, ny//2, ny)) |
|
|
89 |
phi = (np.rad2deg(np.arctan2(y, x)) + 180).T |
|
|
90 |
r = np.sqrt(x**2+y**2+1e-8) |
|
|
91 |
return phi, r |
|
|
92 |
|
|
|
93 |
def convert_to_polar(mask, E): |
|
|
94 |
|
|
|
95 |
phi = polar_grid(*E.shape[:2])[0] |
|
|
96 |
Err = np.zeros(mask.shape) |
|
|
97 |
Ecc = np.zeros(mask.shape) |
|
|
98 |
Erc = np.zeros(mask.shape) |
|
|
99 |
Ecr = np.zeros(mask.shape) |
|
|
100 |
for k in range(mask.shape[-1]): |
|
|
101 |
cos = np.cos(np.deg2rad(phi)) |
|
|
102 |
sin = np.sin(np.deg2rad(phi)) |
|
|
103 |
|
|
|
104 |
Exx, Exy, Eyx, Eyy = E[:,:,k,0,0],E[:,:,k,0,1],E[:,:,k,1,0],E[:,:,k,1,1] |
|
|
105 |
Err[:,:,k] += cos*( cos*Exx+sin*Exy) + sin*( cos*Eyx+sin*Eyy) |
|
|
106 |
Ecc[:,:,k] += -sin*(-sin*Exx+cos*Exy) + cos*(-sin*Eyx+cos*Eyy) |
|
|
107 |
Erc[:,:,k] += cos*(-sin*Exx+cos*Exy) + sin*(-sin*Eyx+cos*Eyy) |
|
|
108 |
Ecr[:,:,k] += -sin*( cos*Exx+sin*Exy) + cos*( cos*Eyx+sin*Eyy) |
|
|
109 |
|
|
|
110 |
return Err, Ecc, Erc, Ecr |
|
|
111 |
|
|
|
112 |
|
|
|
113 |
def convert_to_aha4d(tensor, mask): |
|
|
114 |
Tensor = tensor.copy() |
|
|
115 |
Mask = mask.copy() |
|
|
116 |
|
|
|
117 |
Tensor[Mask!=2,:] = 0 |
|
|
118 |
|
|
|
119 |
# rotate to have RV center of mass on the right |
|
|
120 |
angle = _get_lv2rv_angle(Mask) |
|
|
121 |
Tensor = rotate(Tensor, -angle, reshape=False, order=0) |
|
|
122 |
Mask = rotate(Mask, -angle, reshape=False, order=1).clip(0,3).round() |
|
|
123 |
|
|
|
124 |
# roll to center |
|
|
125 |
cx, cy = center_of_mass(Mask>1)[:2] |
|
|
126 |
Tensor = np.flipud(np.rot90(_roll_to_center(Tensor, cx, cy))) |
|
|
127 |
Mask = np.flipud(np.rot90(_roll_to_center(Mask, cx, cy))) |
|
|
128 |
|
|
|
129 |
# remove slices that do not contain tissue labels |
|
|
130 |
ID = Mask.sum(axis=(0,1))>0 |
|
|
131 |
Mask = Mask[:,:,ID] |
|
|
132 |
Tensor = Tensor[:,:,ID] |
|
|
133 |
|
|
|
134 |
return Tensor, Mask |
|
|
135 |
|
|
|
136 |
class PolarMap(): |
|
|
137 |
|
|
|
138 |
def __init__(self, Err, Ecc, mask): |
|
|
139 |
""" Plot Err and Ecc in a PolarMap using a segmentation of the heart as reference. |
|
|
140 |
Assuming mask==2 yields the myocardium labels. |
|
|
141 |
|
|
|
142 |
""" |
|
|
143 |
|
|
|
144 |
self.Err = Err |
|
|
145 |
self.Ecc = Ecc |
|
|
146 |
self.mask = mask |
|
|
147 |
|
|
|
148 |
def project_to_aha_polar_map(self): |
|
|
149 |
|
|
|
150 |
Err = self.Err.copy() |
|
|
151 |
Ecc = self.Ecc.copy() |
|
|
152 |
mask = self.mask.copy() |
|
|
153 |
|
|
|
154 |
Err[mask!=2] = 0 |
|
|
155 |
Ecc[mask!=2] = 0 |
|
|
156 |
|
|
|
157 |
# rotate to have RV center of mass on the right |
|
|
158 |
angle = _get_lv2rv_angle(mask) |
|
|
159 |
Ecc = rotate(Ecc, -angle, reshape=False, order=0) |
|
|
160 |
Err = rotate(Err, -angle, reshape=False, order=0) |
|
|
161 |
mask = rotate(mask, -angle, reshape=False, order=1).clip(0,3).round() |
|
|
162 |
|
|
|
163 |
# roll to center |
|
|
164 |
cx, cy = center_of_mass(mask>1)[:2] |
|
|
165 |
Ecc = np.flipud(np.rot90(_roll_to_center(Ecc, cx, cy))) |
|
|
166 |
Err = np.flipud(np.rot90(_roll_to_center(Err, cx, cy))) |
|
|
167 |
mask = np.flipud(np.rot90(_roll_to_center(mask, cx, cy))) |
|
|
168 |
|
|
|
169 |
# remove slices that do not contain tissue labels |
|
|
170 |
ID = mask.sum(axis=(0,1))>0 |
|
|
171 |
mask = mask[:,:,ID] |
|
|
172 |
Err = Err[:,:,ID] |
|
|
173 |
Ecc = Ecc[:,:,ID] |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
|
|
|
177 |
|
|
|
178 |
Err = Err.transpose((2,0,1)) |
|
|
179 |
Ecc = Ecc.transpose((2,0,1)) |
|
|
180 |
print('... radial strain') |
|
|
181 |
V_err = self._project_to_aha_polar_map(Err) |
|
|
182 |
print('... circumferential strain') |
|
|
183 |
V_ecc = self._project_to_aha_polar_map(Ecc) |
|
|
184 |
|
|
|
185 |
results = {'V_err':V_err, 'V_ecc':V_ecc, 'mask':mask} |
|
|
186 |
|
|
|
187 |
return results |
|
|
188 |
|
|
|
189 |
def _project_to_aha_polar_map(self, E, nphi=360, nrad=100, dphi=1): |
|
|
190 |
|
|
|
191 |
nz = E.shape[0] |
|
|
192 |
angles = np.arange(0, nphi, dphi) |
|
|
193 |
V = np.zeros((nz, angles.shape[0], nrad)) |
|
|
194 |
|
|
|
195 |
for rj in range(nz): |
|
|
196 |
|
|
|
197 |
Err_q = _inpter2(E[rj]) |
|
|
198 |
|
|
|
199 |
PHI, R = _polar_grid(*Err_q.shape) |
|
|
200 |
PHI = PHI.ravel() |
|
|
201 |
R = R.ravel() |
|
|
202 |
|
|
|
203 |
for k, pmin in enumerate(angles): |
|
|
204 |
pmax = pmin + dphi/2.0 |
|
|
205 |
|
|
|
206 |
# Get values for angle segment |
|
|
207 |
PHI_SEGMENT = (PHI>=pmin)&(PHI<=pmax) |
|
|
208 |
Rk = R[PHI_SEGMENT] |
|
|
209 |
PHIk = PHI[PHI_SEGMENT] |
|
|
210 |
Vk = Err_q.ravel()[PHI_SEGMENT] |
|
|
211 |
|
|
|
212 |
|
|
|
213 |
Rk = Rk[np.abs(Vk)!=0] |
|
|
214 |
Vk = Vk[np.abs(Vk)!=0] |
|
|
215 |
|
|
|
216 |
if len(Vk) == 0: |
|
|
217 |
continue # this might not be the best |
|
|
218 |
Rk = _rescale_linear(Rk, rj, rj + 1) |
|
|
219 |
|
|
|
220 |
r = np.arange(rj, rj+1, 1.0/nrad) |
|
|
221 |
f = interp1d(Rk, Vk) |
|
|
222 |
v = f(r) |
|
|
223 |
|
|
|
224 |
V[rj,k] += v |
|
|
225 |
|
|
|
226 |
return V |
|
|
227 |
|
|
|
228 |
|
|
|
229 |
def construct_polar_map(self, tensor, start=30, stop=70, sigma=12): |
|
|
230 |
|
|
|
231 |
E = tensor.copy() |
|
|
232 |
mu = E[:,:,start:stop].mean() |
|
|
233 |
|
|
|
234 |
nz = E.shape[0] |
|
|
235 |
E = np.concatenate(np.array_split(E[:,:,start:stop], nz), axis=-1)[0] |
|
|
236 |
|
|
|
237 |
old = E.shape[1]/nz*1. |
|
|
238 |
for j in range(nz-1): |
|
|
239 |
xi = int(old//2+j*old) |
|
|
240 |
xj = int(old+old//2+j*old) |
|
|
241 |
E[:,xi:xj] = gaussian_filter(E[:,xi:xj],sigma=sigma, mode='wrap') |
|
|
242 |
E[:,xi:xj] = gaussian_filter(E[:,xi:xj],sigma=sigma, mode='wrap') |
|
|
243 |
|
|
|
244 |
E = np.stack(np.array_split(E,nz,axis=1)) |
|
|
245 |
|
|
|
246 |
E = gaussian_filter(E, sigma=sigma, mode='wrap') |
|
|
247 |
E = gaussian_filter(E, sigma=sigma, mode='wrap') |
|
|
248 |
|
|
|
249 |
E = [E[0][None]] + [E[1:3]] + np.array_split(E[3:], 2, axis=0) |
|
|
250 |
|
|
|
251 |
E = [np.mean(E[i], axis=0) for i in range(4)] |
|
|
252 |
E = np.concatenate(E, axis=1) |
|
|
253 |
|
|
|
254 |
old = E.shape[1]/4 |
|
|
255 |
for j in range(3): |
|
|
256 |
xi = int(old//2+j*old) |
|
|
257 |
xj = int(old+old//2+j*old) |
|
|
258 |
E[:,xi:xj] = gaussian_filter(E[:,xi:xj], sigma=sigma, mode='wrap') |
|
|
259 |
E[:,xi:xj] = gaussian_filter(E[:,xi:xj], sigma=sigma, mode='wrap') |
|
|
260 |
|
|
|
261 |
E = gaussian_filter(E, sigma=sigma, mode='wrap') |
|
|
262 |
E = gaussian_filter(E, sigma=sigma, mode='wrap') |
|
|
263 |
|
|
|
264 |
mu = [mu] + self._get_17segments(E) |
|
|
265 |
|
|
|
266 |
return E, mu |
|
|
267 |
|
|
|
268 |
def _get_17segments(self, data): |
|
|
269 |
c1,c2,c3,c4 = np.array_split(data,4,axis=-1) |
|
|
270 |
c2 = np.roll(c2,-45,0) |
|
|
271 |
#c2 = np.roll(c2,-90,0) |
|
|
272 |
|
|
|
273 |
c4 = [np.mean(ci) for ci in np.array_split(c4,6,axis=0)] |
|
|
274 |
c4 = list(np.roll(np.array(c4),-1)) |
|
|
275 |
c3 = [np.mean(ci) for ci in np.array_split(c3,6,axis=0)] |
|
|
276 |
c3 = list(np.roll(np.array(c3),-1)) |
|
|
277 |
c2 = [np.mean(ci) for ci in np.array_split(c2,4,axis=0)] |
|
|
278 |
#c2 = list(np.roll(np.array(c2),-1)) |
|
|
279 |
c1 = [np.mean(c1)] |
|
|
280 |
|
|
|
281 |
c = c4 + c3 + c2 + c1 |
|
|
282 |
|
|
|
283 |
return c |
|
|
284 |
|
|
|
285 |
def _get_17segments_RC(self, data1,data2): |
|
|
286 |
|
|
|
287 |
def _rc(a,b): |
|
|
288 |
#return np.mean(np.abs((b-a)/b)*100) |
|
|
289 |
return np.mean(((b-a)/b)*100) |
|
|
290 |
|
|
|
291 |
c1_1,c2_1,c3_1,c4_1 = np.array_split(data1,4,axis=-1) |
|
|
292 |
c1_2,c2_2,c3_2,c4_2 = np.array_split(data2,4,axis=-1) |
|
|
293 |
|
|
|
294 |
c4 = [_rc(ci1,ci2) for ci1,ci2 in zip(np.array_split(c4_1,6,axis=0), |
|
|
295 |
np.array_split(c4_2,6,axis=0))] |
|
|
296 |
c4 = list(np.roll(np.array(c4),-1)) |
|
|
297 |
|
|
|
298 |
c3 = [_rc(ci1,ci2) for ci1,ci2 in zip(np.array_split(c3_1,6,axis=0), |
|
|
299 |
np.array_split(c3_2,6,axis=0))] |
|
|
300 |
c3 = list(np.roll(np.array(c3),-1)) |
|
|
301 |
|
|
|
302 |
c2 = [_rc(ci1,ci2) for ci1,ci2 in zip(np.array_split(c2_1,4,axis=0), |
|
|
303 |
np.array_split(c2_2,4,axis=0))] |
|
|
304 |
c2 = list(np.roll(np.array(c2),-1)) |
|
|
305 |
c1 = [_rc(c1_1,c1_2)] |
|
|
306 |
|
|
|
307 |
c = c4 + c3 + c2 + c1 |
|
|
308 |
|
|
|
309 |
return c |
|
|
310 |
|
|
|
311 |
def _roll(x, rx, ry): |
|
|
312 |
x = np.roll(x, rx, axis=0) |
|
|
313 |
return np.roll(x, ry, axis=1) |
|
|
314 |
|
|
|
315 |
def _roll_to_center(x, cx, cy): |
|
|
316 |
nx, ny = x.shape[:2] |
|
|
317 |
return _roll(x, int(nx//2-cx), int(ny//2-cy)) |
|
|
318 |
|
|
|
319 |
def _py_ang(v1, v2): |
|
|
320 |
""" Returns the angle in degrees between vectors 'v1' and 'v2'. """ |
|
|
321 |
cosang = np.dot(v1, v2) |
|
|
322 |
sinang = np.linalg.norm(np.cross(v1, v2)) |
|
|
323 |
return np.rad2deg(np.arctan2(sinang, cosang)) |
|
|
324 |
|
|
|
325 |
def _polar_grid(nx=128, ny=128): |
|
|
326 |
x, y = np.meshgrid(np.linspace(-nx//2, nx//2, nx), np.linspace(-ny//2, ny//2, ny)) |
|
|
327 |
phi = (np.rad2deg(np.arctan2(y, x)) + 180).T |
|
|
328 |
r = np.sqrt(x**2+y**2+1e-8) |
|
|
329 |
return phi, r |
|
|
330 |
|
|
|
331 |
def _rescale_linear(array, new_min, new_max): |
|
|
332 |
minimum, maximum = np.min(array), np.max(array) |
|
|
333 |
m = (new_max-new_min) / (maximum-minimum) |
|
|
334 |
b = new_min - m* minimum |
|
|
335 |
return m*array + b |
|
|
336 |
|
|
|
337 |
def _inpter2(Eij, k=10): |
|
|
338 |
nx, ny = Eij.shape |
|
|
339 |
|
|
|
340 |
x = np.linspace(0,nx-1,nx) |
|
|
341 |
y = np.linspace(0,ny-1,ny) |
|
|
342 |
xq = np.linspace(0,nx-1,nx*k) |
|
|
343 |
yq = np.linspace(0,ny-1,ny*k) |
|
|
344 |
|
|
|
345 |
f = interp2d(x,y,Eij,kind='linear') |
|
|
346 |
|
|
|
347 |
return f(xq,yq) |
|
|
348 |
|
|
|
349 |
def _get_lv2rv_angle(mask): |
|
|
350 |
cx_lv, cy_lv = center_of_mass(mask>1)[:2] |
|
|
351 |
cx_rv, cy_rv = center_of_mass(mask==1)[:2] |
|
|
352 |
phi_angle = _py_ang([cx_rv-cx_lv, cy_rv-cy_lv], [0, 1]) |
|
|
353 |
return phi_angle |
|
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
|
357 |
### FUNCTIONS TO PLOT THE POLAR MAP |
|
|
358 |
|
|
|
359 |
import numpy as np |
|
|
360 |
import matplotlib as mpl |
|
|
361 |
import matplotlib.pyplot as plt |
|
|
362 |
from matplotlib.lines import Line2D |
|
|
363 |
from copy import deepcopy |
|
|
364 |
|
|
|
365 |
def _write(ax, mu, j, theta_i, i, width=2): |
|
|
366 |
xi, yi = polar2cart(0, theta_i) |
|
|
367 |
xf, yf = polar2cart(35, theta_i) |
|
|
368 |
|
|
|
369 |
l = Line2D([40-xi,40-xf], [40-yi,40-yf], color='black', linewidth=width) |
|
|
370 |
ax.add_line(l) |
|
|
371 |
xi, yi = polar2cart(30, theta_i + 2*np.pi/12) |
|
|
372 |
ax.text(40-xi-.3, 40-yi, '%d' %(mu[j][i]), weight='bold', fontsize=14) |
|
|
373 |
|
|
|
374 |
def write(ax, mu, j, width=2): |
|
|
375 |
if j > 1: |
|
|
376 |
for i in range(6): |
|
|
377 |
theta_i = 2*np.pi - i*60*np.pi/180 + 2*60*np.pi/180 |
|
|
378 |
_write(ax, mu, j, theta_i, i) |
|
|
379 |
if j == 1: |
|
|
380 |
for i in range(4): |
|
|
381 |
theta_i = i*90*np.pi/180 - 45*np.pi/180 |
|
|
382 |
_write(ax, mu, j, theta_i, i) |
|
|
383 |
if j ==0: |
|
|
384 |
ax.text(40-.3, 40, '%d' %(mu[j][0]), weight='bold', fontsize=14) |
|
|
385 |
|
|
|
386 |
def plot_bullseye(data,mu,vmin=None,vmax=None, savepath=None,cmap='RdBu_r', label='GPRS (%)', |
|
|
387 |
std=None,cbar=False,color='white', fs=20, xshift=0, yshift=0, ptype='mesh',frac=False): |
|
|
388 |
|
|
|
389 |
rho = np.arange(0,4,4.0/data.shape[1]); |
|
|
390 |
Theta = np.deg2rad(range(data.shape[0])) |
|
|
391 |
[th, r] = np.meshgrid(Theta, rho); |
|
|
392 |
|
|
|
393 |
fig, ax = plt.subplots(figsize=(6,6)) |
|
|
394 |
#fig.subplots_adjust(left=0,right=1,bottom=0,top=1) |
|
|
395 |
#ax.axis('tight') creates errors |
|
|
396 |
#ax.axis('off') |
|
|
397 |
if ptype == 'mesh': |
|
|
398 |
im = ax.pcolormesh(r*np.cos(Theta), r*np.sin(Theta), 100*data.T, |
|
|
399 |
vmin=vmin,vmax=vmax,cmap=cmap,shading='gouraud') |
|
|
400 |
else: |
|
|
401 |
im = ax.contourf(r*np.cos(Theta), r*np.sin(Theta), 100*data.T, |
|
|
402 |
vmin=vmin,vmax=vmax,cmap=cmap,shading='gouraud') |
|
|
403 |
if cbar: |
|
|
404 |
cbar = plt.colorbar(im, cax=fig.add_axes([0.15, -0.03, 0.7, 0.05]), orientation='horizontal') |
|
|
405 |
|
|
|
406 |
new_ticks = [] |
|
|
407 |
new_ticks_labels = [] |
|
|
408 |
for i,tick in enumerate(cbar.ax.get_xticks()): |
|
|
409 |
if i % 2 == 0: |
|
|
410 |
new_ticks.append(np.round(tick)) |
|
|
411 |
new_ticks_labels.append(str(int(np.round(tick)))) |
|
|
412 |
|
|
|
413 |
cbar.set_ticks(new_ticks); |
|
|
414 |
cbar.set_ticklabels(new_ticks_labels); |
|
|
415 |
|
|
|
416 |
# override if vmin is provided, assume vmax is provided too for now |
|
|
417 |
if vmin is not None: |
|
|
418 |
cbar.set_ticks([vmin, (vmax+vmin)/2.0, vmax]); |
|
|
419 |
cbar.set_ticklabels(['%d'%(i) for i in [vmin, (vmax+vmin)/2.0, vmax]]); |
|
|
420 |
cbar.ax.tick_params(labelsize=18) |
|
|
421 |
cbar.set_label(label, fontsize=26, weight='bold') |
|
|
422 |
|
|
|
423 |
ax.axis('off') |
|
|
424 |
if std is not None: |
|
|
425 |
draw_circle_group(ax,100*np.array(mu),100*np.array(std)) |
|
|
426 |
if frac: |
|
|
427 |
draw_circle_frac(ax,np.array(mu), color=color) |
|
|
428 |
else: |
|
|
429 |
draw_circle(ax,100*np.array(mu), color=color, fs=fs, xshift=xshift, yshift=yshift) |
|
|
430 |
if savepath is not None: |
|
|
431 |
if not cbar: |
|
|
432 |
plt.tight_layout() |
|
|
433 |
plt.savefig(savepath, dpi=600) |
|
|
434 |
plt.show() |
|
|
435 |
|
|
|
436 |
def plot_bullseye_ratio(data,mu,vmin=None,vmax=None, savepath=None,cmap='RdBu_r', label='GPRS (%)', |
|
|
437 |
std=None,cbar=False,color='white',ptype='mesh',frac=False): |
|
|
438 |
|
|
|
439 |
rho = np.arange(0,4,4.0/data.shape[1]); |
|
|
440 |
Theta = np.deg2rad(range(data.shape[0])) |
|
|
441 |
[th, r] = np.meshgrid(Theta, rho); |
|
|
442 |
|
|
|
443 |
fig, ax = plt.subplots(figsize=(6,6)) |
|
|
444 |
|
|
|
445 |
if ptype == 'mesh': |
|
|
446 |
im = ax.pcolormesh(r*np.cos(Theta), r*np.sin(Theta), 100*data.T, |
|
|
447 |
vmin=vmin,vmax=vmax,cmap=cmap,shading='gouraud') |
|
|
448 |
else: |
|
|
449 |
im = ax.contourf(r*np.cos(Theta), r*np.sin(Theta), 100*data.T, |
|
|
450 |
vmin=vmin,vmax=vmax,cmap=cmap,shading='gouraud') |
|
|
451 |
cbar = plt.colorbar(im, cax=fig.add_axes([0.15, -0.03, 0.7, 0.05]), orientation='horizontal') |
|
|
452 |
|
|
|
453 |
draw_circle_error(ax) |
|
|
454 |
ax.axis('off') |
|
|
455 |
if savepath is not None: |
|
|
456 |
if not cbar: |
|
|
457 |
plt.tight_layout() |
|
|
458 |
plt.savefig(savepath, dpi=600) |
|
|
459 |
plt.show() |
|
|
460 |
|
|
|
461 |
def plot_bullseye_error(data,mu,vmin=None,vmax=None, savepath=None,cmap='RdBu_r', label='GPRS (%)',n=5): |
|
|
462 |
|
|
|
463 |
rho = np.arange(0,4,4.0/data.shape[1]); |
|
|
464 |
Theta = np.deg2rad(range(data.shape[0])) |
|
|
465 |
[th, r] = np.meshgrid(Theta, rho); |
|
|
466 |
|
|
|
467 |
fig, ax = plt.subplots(figsize=(6,6)) |
|
|
468 |
|
|
|
469 |
levels = np.linspace(vmin, vmax, n+1) |
|
|
470 |
im = ax.contourf(r*np.cos(Theta), r*np.sin(Theta), 100*data.T, |
|
|
471 |
vmin=vmin,vmax=vmax,cmap=cmap,levels=levels) |
|
|
472 |
|
|
|
473 |
cbar = plt.colorbar(im, cax=fig.add_axes([0.15, -0.03, 0.7, 0.05]), orientation='horizontal') |
|
|
474 |
|
|
|
475 |
#ticks = -np.array(range(0,120,20)) |
|
|
476 |
|
|
|
477 |
#cbar.set_ticks(ticks); |
|
|
478 |
#cbar.set_ticklabels(['%d'%(i) for i in ticks]); |
|
|
479 |
|
|
|
480 |
|
|
|
481 |
|
|
|
482 |
ax.axis('off') |
|
|
483 |
draw_circle_error(ax) |
|
|
484 |
if savepath is not None: |
|
|
485 |
if not cbar: |
|
|
486 |
plt.tight_layout() |
|
|
487 |
plt.savefig(savepath, dpi=500) |
|
|
488 |
plt.show() |
|
|
489 |
|
|
|
490 |
def draw_circle_error(ax,width=4): |
|
|
491 |
|
|
|
492 |
circle1 = plt.Circle((0,0), 1, color='black', fill=False, linewidth=width) |
|
|
493 |
circle2 = plt.Circle((0,0), 2, color='black', fill=False, linewidth=width) |
|
|
494 |
circle3 = plt.Circle((0,0), 3, color='black', fill=False, linewidth=width) |
|
|
495 |
circle4 = plt.Circle((0,0), 4, color='black', fill=False, linewidth=width) |
|
|
496 |
|
|
|
497 |
ax.add_artist(circle1) |
|
|
498 |
ax.add_artist(circle2) |
|
|
499 |
ax.add_artist(circle3) |
|
|
500 |
ax.add_artist(circle4) |
|
|
501 |
|
|
|
502 |
j = 0 |
|
|
503 |
for i in range(6): |
|
|
504 |
theta_i = i*60*np.pi/180 + 60*np.pi/180 |
|
|
505 |
xi, yi = polar2cart(2, theta_i) |
|
|
506 |
xf, yf = polar2cart(4, theta_i) |
|
|
507 |
|
|
|
508 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
509 |
ax.add_line(l) |
|
|
510 |
|
|
|
511 |
j += 6 |
|
|
512 |
for i in range(4): |
|
|
513 |
theta_i = i*90*(np.pi/180) - 45 |
|
|
514 |
xi, yi = polar2cart(1, theta_i) |
|
|
515 |
xf, yf = polar2cart(2, theta_i) |
|
|
516 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
517 |
ax.add_line(l) |
|
|
518 |
|
|
|
519 |
def draw_circle_frac(ax, mu, width=4, fs=20, color='white'): |
|
|
520 |
|
|
|
521 |
|
|
|
522 |
|
|
|
523 |
circle1 = plt.Circle((0,0), 1, color='black', fill=False, linewidth=width) |
|
|
524 |
circle2 = plt.Circle((0,0), 2, color='black', fill=False, linewidth=width) |
|
|
525 |
circle3 = plt.Circle((0,0), 3, color='black', fill=False, linewidth=width) |
|
|
526 |
circle4 = plt.Circle((0,0), 4, color='black', fill=False, linewidth=width) |
|
|
527 |
|
|
|
528 |
ax.add_artist(circle1) |
|
|
529 |
ax.add_artist(circle2) |
|
|
530 |
ax.add_artist(circle3) |
|
|
531 |
ax.add_artist(circle4) |
|
|
532 |
|
|
|
533 |
j = 0 |
|
|
534 |
for i in range(6): |
|
|
535 |
theta_i = i*60*np.pi/180 + 60*np.pi/180 |
|
|
536 |
xi, yi = polar2cart(2, theta_i) |
|
|
537 |
xf, yf = polar2cart(4, theta_i) |
|
|
538 |
|
|
|
539 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
540 |
ax.add_line(l) |
|
|
541 |
|
|
|
542 |
xi, yi = polar2cart(3.5, theta_i + 2*np.pi/12) |
|
|
543 |
ax.text(xi-.3, yi, '%.2f' %(mu[j]), weight='bold', fontsize=fs, color=color); |
|
|
544 |
xi, yi = polar2cart(2.5, theta_i + 2*np.pi/12) |
|
|
545 |
ax.text(xi-.3, yi, '%.2f' %(mu[j+6]), weight='bold', fontsize=fs, color=color); j += 1 |
|
|
546 |
|
|
|
547 |
j += 6 |
|
|
548 |
LABELS = ['ANT', 'SEPT', 'INF', 'LAT'] |
|
|
549 |
for i in range(4): |
|
|
550 |
theta_i = i*90*np.pi/180 - 45 |
|
|
551 |
xi, yi = polar2cart(1, theta_i) |
|
|
552 |
xf, yf = polar2cart(2, theta_i) |
|
|
553 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
554 |
ax.add_line(l) |
|
|
555 |
|
|
|
556 |
xi, yi = polar2cart(1.5, theta_i + 2*np.pi/8) |
|
|
557 |
|
|
|
558 |
ax.text(xi-.3, yi, '%.2f' %(mu[j]), weight='bold', fontsize=fs, color=color); j += 1; |
|
|
559 |
xi, yi = polar2cart(5, theta_i + 2*np.pi/8) |
|
|
560 |
|
|
|
561 |
ax.text(0-.3, 0-.3, '%.2f' %(mu[j]), weight='bold', fontsize=fs, color=color) |
|
|
562 |
|
|
|
563 |
def draw_circle(ax, mu, width=4, fs=15, xshift=0, yshift=0, color='white'): |
|
|
564 |
|
|
|
565 |
|
|
|
566 |
|
|
|
567 |
circle1 = plt.Circle((0,0), 1, color='black', fill=False, linewidth=width) |
|
|
568 |
circle2 = plt.Circle((0,0), 2, color='black', fill=False, linewidth=width) |
|
|
569 |
circle3 = plt.Circle((0,0), 3, color='black', fill=False, linewidth=width) |
|
|
570 |
circle4 = plt.Circle((0,0), 4, color='black', fill=False, linewidth=width) |
|
|
571 |
|
|
|
572 |
ax.add_artist(circle1) |
|
|
573 |
ax.add_artist(circle2) |
|
|
574 |
ax.add_artist(circle3) |
|
|
575 |
ax.add_artist(circle4) |
|
|
576 |
|
|
|
577 |
j = 0 |
|
|
578 |
for i in range(6): |
|
|
579 |
theta_i = i*60*np.pi/180 + 60*np.pi/180 |
|
|
580 |
xi, yi = polar2cart(2, theta_i) |
|
|
581 |
xf, yf = polar2cart(4, theta_i) |
|
|
582 |
|
|
|
583 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
584 |
ax.add_line(l) |
|
|
585 |
|
|
|
586 |
xi, yi = polar2cart(3.5, theta_i + 2*np.pi/12) |
|
|
587 |
ax.text(xi-.4-xshift, yi-yshift, '%d' %(mu[j]), weight='bold', fontsize=fs, color=color); |
|
|
588 |
xi, yi = polar2cart(2.5, theta_i + 2*np.pi/12) |
|
|
589 |
ax.text(xi-.4-xshift, yi-yshift, '%d' %(mu[j+6]), weight='bold', fontsize=fs, color=color); j += 1 |
|
|
590 |
|
|
|
591 |
j += 6 |
|
|
592 |
LABELS = ['ANT', 'SEPT', 'INF', 'LAT'] |
|
|
593 |
for i in range(4): |
|
|
594 |
theta_i = i*90*np.pi/180 + 45*np.pi/180 |
|
|
595 |
xi, yi = polar2cart(1, theta_i) |
|
|
596 |
xf, yf = polar2cart(2, theta_i) |
|
|
597 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
598 |
ax.add_line(l) |
|
|
599 |
|
|
|
600 |
xi, yi = polar2cart(1.5, theta_i + 2*np.pi/8) |
|
|
601 |
|
|
|
602 |
ax.text(xi-.4-xshift, yi-yshift, '%d' %(mu[j]), weight='bold', fontsize=fs, color=color); j += 1; |
|
|
603 |
xi, yi = polar2cart(5, theta_i + 2*np.pi/8) |
|
|
604 |
|
|
|
605 |
ax.text(-.4-xshift, 0-yshift, '%d' %(mu[j]), weight='bold', fontsize=fs, color=color) |
|
|
606 |
|
|
|
607 |
|
|
|
608 |
def draw_circle_group(ax, mu, std, width=4, fs=14, color='white'): |
|
|
609 |
|
|
|
610 |
|
|
|
611 |
circle1 = plt.Circle((0,0), 1, color='black', fill=False, linewidth=width) |
|
|
612 |
circle2 = plt.Circle((0,0), 2, color='black', fill=False, linewidth=width) |
|
|
613 |
circle3 = plt.Circle((0,0), 3, color='black', fill=False, linewidth=width) |
|
|
614 |
circle4 = plt.Circle((0,0), 4, color='black', fill=False, linewidth=width) |
|
|
615 |
|
|
|
616 |
ax.add_artist(circle1) |
|
|
617 |
ax.add_artist(circle2) |
|
|
618 |
ax.add_artist(circle3) |
|
|
619 |
ax.add_artist(circle4) |
|
|
620 |
|
|
|
621 |
j = 0 |
|
|
622 |
for i in range(6): |
|
|
623 |
theta_i = i*60*np.pi/180 + 60*np.pi/180 |
|
|
624 |
xi, yi = polar2cart(2, theta_i) |
|
|
625 |
xf, yf = polar2cart(4, theta_i) |
|
|
626 |
|
|
|
627 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
628 |
ax.add_line(l) |
|
|
629 |
|
|
|
630 |
xi, yi = polar2cart(3.5, theta_i + 2*np.pi/12) |
|
|
631 |
ax.text(xi-.6, yi, '%d(%d)' %(mu[j],std[j]), weight='bold', fontsize=fs, color=color); |
|
|
632 |
xi, yi = polar2cart(2.5, theta_i + 2*np.pi/12) |
|
|
633 |
ax.text(xi-.6, yi, '%d(%d)' %(mu[j+6],std[j+6]), weight='bold', fontsize=fs, color=color); j += 1 |
|
|
634 |
|
|
|
635 |
j += 6 |
|
|
636 |
LABELS = ['ANT', 'SEPT', 'INF', 'LAT'] |
|
|
637 |
for i in range(4): |
|
|
638 |
theta_i = i*90*np.pi/180 |
|
|
639 |
xi, yi = polar2cart(1, theta_i) |
|
|
640 |
xf, yf = polar2cart(2, theta_i) |
|
|
641 |
l = Line2D([xi,xf], [yi,yf], color='black', linewidth=width) |
|
|
642 |
ax.add_line(l) |
|
|
643 |
|
|
|
644 |
xi, yi = polar2cart(1.5, theta_i + 2*np.pi/8) |
|
|
645 |
|
|
|
646 |
ax.text(xi-.6, yi-0.1, '%d(%d)' %(mu[j],std[j]), weight='bold', fontsize=fs, color=color); j += 1; |
|
|
647 |
xi, yi = polar2cart(5, theta_i + 2*np.pi/8) |
|
|
648 |
|
|
|
649 |
ax.text(0-.3, 0-.2, '%d(%d)' %(mu[j],std[j]), weight='bold', fontsize=fs, color=color) |
|
|
650 |
|
|
|
651 |
def polar2cart(r, theta): |
|
|
652 |
x = r * np.cos(theta) |
|
|
653 |
y = r * np.sin(theta) |
|
|
654 |
return x, y |